12.運(yùn)行如圖所示的程序框圖,則輸出的結(jié)果是( 。
A.$\frac{49}{99}$B.$\frac{50}{101}$C.$\frac{51}{103}$D.$\frac{1}{2}$

分析 程序框圖累計算$\frac{1}{k(k+2)}$=$\frac{1}{2}$($\frac{1}{k}$-$\frac{1}{k+2}$)各項的和,即s=$\frac{1}{2}$[(1-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{5}$)+…+($\frac{1}{99}$-$\frac{1}{101}$)],
根據(jù)判斷框,即可得出結(jié)論.

解答 解:程序框圖累計算$\frac{1}{k(k+2)}$=$\frac{1}{2}$($\frac{1}{k}$-$\frac{1}{k+2}$)各項的和,
即s=$\frac{1}{2}$[(1-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{5}$)+…+($\frac{1}{99}$-$\frac{1}{101}$)],
判斷框為k>99時,輸出的結(jié)果為$\frac{50}{101}$,
故選B.

點(diǎn)評 算法是新課程中的新增加的內(nèi)容,也必然是新高考中的一個熱點(diǎn),應(yīng)高度重視.程序填空也是重要的考試題型,這種題考試的重點(diǎn)有:①分支的條件②循環(huán)的條件③變量的賦值④變量的輸出.其中前兩點(diǎn)考試的概率更大.此種題型的易忽略點(diǎn)是:不能準(zhǔn)確理解流程圖的含義而導(dǎo)致錯誤.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.要得到函數(shù)y=sin(3x-$\frac{π}{4}$)的圖象,只需將函數(shù)y=cos3x的圖象( 。
A.向右平移$\frac{π}{4}$個單位B.向左平移$\frac{π}{4}$個單位
C.向右平移$\frac{3π}{4}$個單位D.向左平移$\frac{3π}{4}$個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若2sinθ+cosθ=0,則$tan(θ+\frac{π}{4})$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.為了摸清整個江門大道的交通狀況,工作人員隨機(jī)選取20處路段,在給定的測試時間內(nèi)記錄到機(jī)動車的通行數(shù)量情況如下(單位:輛):
147  161  170  180  163  172  178  167  191  182
181  173  174  165  158  154  159  189  168  169
(Ⅰ)完成如下頻數(shù)分布表,并作頻率分布直方圖;
通行數(shù)量區(qū)間[145,155)[155,165)[165,175)[175,185)[185,195)
頻數(shù)
(Ⅱ)現(xiàn)用分層抽樣的方法從通行數(shù)量區(qū)間為[165,175)、[175,185)及[185,195)的路段中取出7處加以優(yōu)化,再從這7處中隨機(jī)選2處安裝智能交通信號燈,設(shè)所取出的7處中,通行數(shù)量區(qū)間為[165,175)路段安裝智能交通信號燈的數(shù)量為隨機(jī)變量X(單位:盞),試求隨機(jī)變量X的分布列與數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)函數(shù)f(x)=x2-2x-3,若從區(qū)間[-2,4]上任取一個實數(shù)x0,則所選取的實數(shù)x0滿足f(x0)≤0的概率為( 。
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={x|-1<x<3},B={x|x<a},若A∩B=A,則實數(shù)a的取值范圍是( 。
A.a>3B.a≥3C.a≥-1D.a>-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ax+lnx(a∈R).
(Ⅰ)若a=2,求曲線y=f(x)在x=1處的切線方程;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)若對任意x∈(0,+∞),都有f(x)<2成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)全集U=A∪B={1,2,3,4,5},A∩(∁UB)={1,2},則集合B=( 。
A.{2,4,5}B.{3,4,5}C.{4,5}D.(2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=ex-x2+a,x∈R,曲線y=f(x)在(0,f(0))處的切線方程為y=bx.
(1)求f(x)的解析式;
(2)當(dāng)x∈R時,求證:f(x)≥-x2+x;
(3)若f(x)≥kx對任意的x∈(0,+∞)恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案