已知 ().
(1)當(dāng)時,判斷在定義域上的單調(diào)性;
(2)若在上的最小值為,求的值;
(3)若在上恒成立,試求的取值范圍.
(1)單調(diào)遞增 (2) (3)
解析試題分析:(1)判斷函數(shù)的單調(diào)性常用作差比較法、導(dǎo)函數(shù)法.其共同點(diǎn)都是與0比大小確定單調(diào)性.也可以利用基本初等函數(shù)的單調(diào)性來判斷:當(dāng)時,因為與在上都是單調(diào)遞增,所以 ()在定義域上單調(diào)遞增;(2)利用導(dǎo)函數(shù)法求閉區(qū)間上的最值,首先要求出極值,然后再與兩個端點(diǎn)函數(shù)值比較得出最值;既要靈活利用單調(diào)性,又要注意對字母系數(shù)進(jìn)行討論;(3)解決“恒成立”問題,常用分離參數(shù)法,轉(zhuǎn)化為求新構(gòu)造函數(shù)的最值(或值域).
試題解析:(1)由題意得,且 1分
顯然,當(dāng)時,恒成立,在定義域上單調(diào)遞增; 3分
(2)當(dāng)時由(1)得在定義域上單調(diào)遞增,所以在上的最小值為,
即(與矛盾,舍); 5分
當(dāng),顯然在上單調(diào)遞增,最小值為0,不合題意; 6分
當(dāng),,
若(舍);
若(滿足題意);
(舍); 9分
綜上所述. 10分
(3)若在上恒成立,即在上恒成立,(分離參數(shù)求解)
等價于在恒成立,
令. 則; 11分
令,則
顯然當(dāng)時,在上單調(diào)遞減,,
即恒成立,說明在單調(diào)遞減,; 13分
所以. &nb
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
(1)如果在處取得最小值,求的解析式;
(2)如果,的單調(diào)遞減區(qū)間的長度是正整數(shù),試求和的值.(注:區(qū)間的長度為)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(Ⅰ)若,求的極大值;
(Ⅱ)若在定義域內(nèi)單調(diào)遞減,求滿足此條件的實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)時,求函數(shù)的最大值;
(2)若函數(shù)沒有零點(diǎn),求實(shí)數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)().
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,取得極值,求函數(shù)在上的最小值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在點(diǎn)處的切線方程是x+ y-l=0,其中e為自然對數(shù)的底數(shù),函數(shù)g(x)=1nx- cx+ 1+ c(c>0),對一切x∈(0,+)均有恒成立.
(Ⅰ)求a,b,c的值;
(Ⅱ)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義在的函數(shù),在處的切線斜率為
(Ⅰ)求及的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時,恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)當(dāng)時,函數(shù)取得極大值,求實(shí)數(shù)的值;
(Ⅱ)已知結(jié)論:若函數(shù)在區(qū)間內(nèi)存在導(dǎo)數(shù),則存在
,使得. 試用這個結(jié)論證明:若函數(shù)
(其中),則對任意,都有;
(Ⅲ)已知正數(shù)滿足,求證:對任意的實(shí)數(shù),若時,都
有.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com