已知函數(shù)在點(diǎn)處的切線方程是x+ y-l=0,其中e為自然對(duì)數(shù)的底數(shù),函數(shù)g(x)=1nx- cx+ 1+ c(c>0),對(duì)一切x∈(0,+)均有恒成立.
(Ⅰ)求a,b,c的值;
(Ⅱ)求證:.

(Ⅰ),,;(Ⅱ)詳見解析.

解析試題分析:(Ⅰ)利用導(dǎo)數(shù)的幾何意義求、,利用導(dǎo)數(shù)導(dǎo)數(shù)法判斷單調(diào)性,用函數(shù)的最值積恒成立求;(Ⅱ)構(gòu)造新函數(shù),利用導(dǎo)數(shù)法求的最小值,利用結(jié)合(Ⅰ)中的結(jié)論進(jìn)行證明.
試題解析:(Ⅰ),,,
,.                                  (2分)
,由于,
所以當(dāng)時(shí),是增函數(shù),
當(dāng)時(shí),是減函數(shù),
,
恒成立,,即恒成立,①     (4分)
,則,
上是增函數(shù),上是減函數(shù),
,即,當(dāng)且僅當(dāng)時(shí)等號(hào)成立 .

由①②可知,,所以.            (6分)
(Ⅱ)證法一:所求證不等式即為.
設(shè),,
當(dāng)時(shí),是減函數(shù),
當(dāng)時(shí),是減函數(shù),
,即.             (8分)
由(Ⅰ)中結(jié)論②可知,,,當(dāng)時(shí),,
從而                    (10分)

.
(或者也可)
,原不等式成立.                           (12分)
考點(diǎn):導(dǎo)數(shù)法判斷函數(shù)的單調(diào)性,恒成立,不等式的證明.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),.
(Ⅰ)若,求函數(shù)在區(qū)間上的最值;
(Ⅱ)若恒成立,求的取值范圍. (注:是自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)處取得極值.
(1)求實(shí)數(shù)的值;
(2)若關(guān)于的方程上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;
(3)若,使成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知 ().
(1)當(dāng)時(shí),判斷在定義域上的單調(diào)性;
(2)若上的最小值為,求的值;
(3)若上恒成立,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù) ().
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)試通過研究函數(shù))的單調(diào)性證明:當(dāng)時(shí),;
(Ⅲ)證明:當(dāng),且均為正實(shí)數(shù),  時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若函數(shù)在區(qū)間上存在極值點(diǎn),求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)求證:.(為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),.
(Ⅰ)若,求函數(shù)在區(qū)間上的最值;
(Ⅱ)若恒成立,求的取值范圍.
注:是自然對(duì)數(shù)的底數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),它的一個(gè)極值點(diǎn)是
(Ⅰ) 求的值及的值域;
(Ⅱ)設(shè)函數(shù),試求函數(shù)的零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定義在上的函數(shù)(其中).
(Ⅰ)解關(guān)于的不等式;
(Ⅱ)若不等式對(duì)任意恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案