【題目】交通擁堵指數(shù)是綜合反映道路網(wǎng)暢通或擁堵的概念,記交通擁堵指數(shù)為 ,其范圍為 ,分別有五個級別: 暢通; 基本暢通; 輕度擁堵; 中度擁堵; 嚴(yán)重?fù)矶拢砀叻鍟r段 ,從某市交通指揮中心選取了市區(qū) 個交通路段,依據(jù)其交通擁堵指數(shù)數(shù)據(jù)繪制的直方圖如圖所示.

(Ⅰ)求出輕度擁堵,中度擁堵,嚴(yán)重?fù)矶侣范胃饔卸嗌賯;

(Ⅱ)用分層抽樣的方法從交通指數(shù)在 , , 的路段中共抽取個路段,求依次抽取的三個級別路段的個數(shù);

(Ⅲ)從(Ⅱ)中抽取的個路段中任取個,求至少個路段為輕度擁堵的概率.

【答案】(1) 個, 個, 個(2) , , 個(3)

【解析】試題分析:)由頻率分布直方圖可知底×高=頻率,頻數(shù)×20=個數(shù),由頻率分布直方圖很容易知道輕度擁堵,中度擁堵,嚴(yán)重?fù)矶碌念l率分別是0.3,0.45,0.15,從而得到 個路段中,輕度擁堵、中度擁堵、嚴(yán)重?fù)矶侣范蔚膫數(shù);

(Ⅱ)根據(jù)分層抽樣,交通指數(shù)在[4,10)的路段共18個,抽取6個,求出抽取的比值,繼而求得路段個數(shù)

(Ⅲ)考查古典概型,一一列舉所有滿足條件的基本事件,利用概率公式求得.

試題解析:

(Ⅰ) 由直方圖可知:

, ,

所以這 個路段中,輕度擁堵、中度擁堵、嚴(yán)重?fù)矶侣范畏謩e為 個, 個, 個.

由(1)知擁堵路段共有 個,按分層抽樣從 個路段中選出 個,

每種情況: , ,

即這三個級別路段中分別抽取的個數(shù)為 , 個.

記(中選取的 個輕度擁堵路段為 , ,

選取的 個中度擁堵路段為 , ,選取的 個嚴(yán)重?fù)矶侣范螢?/span> ,

則從 個路段選取 個路段的可能情況如下:

, , , ,

, , , , , , 種可能,

其中至少有 個輕度擁堵的有: , , , , ,

, , 種可能.

所以所選 個路段中至少 個路段為輕度擁堵的概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的部分圖象如圖所示,且相鄰的兩個最值點的距離為.

1)求函數(shù)的解析式;

2)若將函數(shù)的圖象向左平移1個單位長度后得到函數(shù)的圖象,關(guān)于的不等式上有解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解關(guān)于的不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a >0,已知函數(shù) (x>0)

()討論函數(shù)的單調(diào)性;

()試判斷函數(shù)上是否有兩個零點,并說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小王在年初用50萬元購買一輛大貨車,第一年因繳納各種費用需支出6萬元,從第二年起,每年都比上一年增加支出2萬元,假定該車每年的運輸收入均為25萬元.小王在該車運輸累計收入超過總支出后,考慮將大貨車作為二手車出售,若該車在第x年年底出售,其銷售價格為25x萬元(國家規(guī)定大貨車的報廢年限為10年).

1)大貨車運輸?shù)降趲啄昴甑,該車運輸累計收入超過總支出?

2)在第幾年年底將大貨車出售,能使小王獲得的年平均利潤最大(利潤=累計收入+銷售收入-總支出)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某射擊運動員每次擊中目標(biāo)的概率都是0.7.現(xiàn)采用隨機模擬的方法估計該運動員射擊4次,至少擊中2次的概率:先由計算器算出0~9之間取整數(shù)值的隨機數(shù),指定0,1,2表示沒有擊中目標(biāo),3,4,5,6,7,8,9表示擊中目標(biāo);因為射擊4次,故以每4個隨機數(shù)為一組,代表射擊4次的結(jié)果.經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù):

5727 0293 7140 9857 0347

4373 8636 9647 1417 4698

0371 6233 2616 8045 6011

3661 9597 7424 6710 4281

據(jù)此估計,該射擊運動員射擊4次至少擊中2次的概率為( )

A. 0.8 B. 0.85 C. 0.9 D. 0.95

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,EPC的中點,作EFPBPB于點F

(Ⅰ)證明 PA//平面EDB;

(Ⅱ)證明PB⊥平面EFD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三角形的面積為,其中,為三角形的邊長,為三角形內(nèi)切圓的半徑,則利用類比推理,可得出四面體的體積為( )

A.

B.

C. ,(為四面體的高)

D. ,(,,分別為四面體的四個面的面積,為四面體內(nèi)切球的半徑)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,討論函數(shù)的單調(diào)性;

(2)若不等式對于任意成立,求正實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案