3.已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,4)、B(5,-2)、C(1,2),求:
(1)邊BC中點(diǎn)D的坐標(biāo);
(2)BC邊上中線AD的長(zhǎng)度.

分析 (1)利用中點(diǎn)坐標(biāo)公式即可得出.
(2)利用兩點(diǎn)之間的距離公式即可得出.

解答 解:(1)xD=$\frac{5+1}{2}$=3,yD=$\frac{-2+2}{2}$=0.
∴D(3,0).
(2)BC邊上中線AD的長(zhǎng)度=$\sqrt{(1-3)^{2}+(4-0)^{2}}$=2$\sqrt{5}$.

點(diǎn)評(píng) 本題考查了中點(diǎn)坐標(biāo)公式、兩點(diǎn)之間的距離公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知雙曲線C的一個(gè)焦點(diǎn)與拋物線${C_1}:{y^2}=-16x$的焦點(diǎn)重合,且其離心率為2.
(1)求雙曲線C的方程;
(2)求雙曲線C的漸近線與拋物線C1的準(zhǔn)線所圍成三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.中國(guó)古代數(shù)學(xué)著作《孫子算經(jīng)》中有這樣一道算術(shù)題:“今有物不知其數(shù),三三數(shù)之余二,五五數(shù)之余三,問(wèn)物幾何?”人們把此類題目稱為“中國(guó)剩余定理”,若正整數(shù)N除以正整數(shù)m后的余數(shù)為n,則記為N=n(modm),例如11=2(mod3).現(xiàn)將該問(wèn)題以程序框圖的算法給出,執(zhí)行該程序框圖,則輸出的n等于( 。
A.21B.22C.23D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知M={x|-2≤x≤2},N={x|x<1},則(∁RM)∩N={x|x<-2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若0<x<1,則$\frac{1}{x}+\frac{2x}{1-x}$的最小值為( 。
A.$2\sqrt{2}$B.1+$2\sqrt{2}$C.2+$2\sqrt{2}$D.3+$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=acosα}\\{y=bsinα}\end{array}\right.$(α為參數(shù)),點(diǎn)M($\frac{\sqrt{6}}{2}$,$\frac{1}{2}$)在曲線C上,且對(duì)應(yīng)的參數(shù)α=$\frac{π}{6}$.
(1)以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求曲線C的極坐標(biāo)方程;
(2)過(guò)點(diǎn)P(0,2)作斜率為$\sqrt{3}$的直線l,交曲線C于A、B兩點(diǎn),求直線l的參數(shù)方程及|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)向量$\overrightarrow a=({-1,2}),\overrightarrow b=({m,1})$,若向量$\overrightarrow a+2\overrightarrow b$與$2\overrightarrow a-\overrightarrow b$平行,則m=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.《張丘建算經(jīng)》是我國(guó)南北朝時(shí)期的一部重要數(shù)學(xué)著作,書中系統(tǒng)的介紹了等差數(shù)列,同類結(jié)果在三百多年后的印度才首次出現(xiàn).書中有這樣一個(gè)問(wèn)題,大意為:某女子善于織布,后一天比前一天織得快,而且每天增加的數(shù)量相同,已知第一天織布10尺,一個(gè)月(按30天計(jì)算)總共織布6尺,問(wèn)每天增加的數(shù)量為多少尺?該問(wèn)題的答案為( 。
A.$\frac{8}{29}$尺B.$\frac{16}{29}$尺C.$\frac{32}{29}$尺D.$\frac{1}{2}$尺

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.根據(jù)平面向量基本定理,若$\overrightarrow{e_1},\overrightarrow{e_2}$為一組基底,同一平面的向量$\overrightarrow a$可以被唯一確定地表示為$\overrightarrow a=x\overrightarrow{e_1}+y\overrightarrow{e_2}$,則向量$\overrightarrow a$與有序?qū)崝?shù)對(duì)(x,y)一一對(duì)應(yīng),稱(x,y)為向量$\overrightarrow a$在基底$\overrightarrow{e_1},\overrightarrow{e_2}$下的坐標(biāo);特別地,若$\overrightarrow{e_1},\overrightarrow{e_2}$分別為x,y軸正方向的單位向量$\overrightarrow i,\overrightarrow j$,則稱(x,y)為向量$\overrightarrow a$的直角坐標(biāo).
(I)據(jù)此證明向量加法的直角坐標(biāo)公式:若$\overrightarrow a=({x_1},{y_1}),\overrightarrow b=({x_2},{y_2})$,則$\overrightarrow a+\overrightarrow b=({x_1}+{x_2},{y_1}+{y_2})$;
(II)如圖,直角△OAB中,$∠AOB={90°},|\overrightarrow{OA}|=1,|\overrightarrow{OB}|=\sqrt{3}$,C點(diǎn)在AB上,且$\overrightarrow{OC}⊥\overrightarrow{AB}$,求向量$\overrightarrow{OC}$在基底$\overrightarrow{OA},\overrightarrow{OB}$下的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案