13.設函數(shù)f(x)=Asin(ωx+ϕ)(A,ω,ϕ為常數(shù),且A>0,ω>0,0<ϕ<π)的部分圖象如圖所示.
(1)求A,ω,ϕ的值;
(2)當x∈[0,$\frac{π}{2}$]時,求f(x)的取值范圍.

分析 (1)由函數(shù)的圖象的頂點坐標求出A,由周期求出ω,由五點法作圖求出φ的值,可得函數(shù)的解析式.
(2)利用正弦函數(shù)的定義域和值域,求得當x∈[0,$\frac{π}{2}$]時,求f(x)的取值范圍.

解答 解:(1)根據(jù)函數(shù)f(x)=Asin(ωx+ϕ)(A,ω,ϕ為常數(shù),且A>0,ω>0,0<ϕ<π)的部分圖象,
可得A=$\sqrt{3}$,$\frac{1}{4}$•$\frac{2π}{ω}$=$\frac{7π}{12}$-$\frac{π}{3}$=$\frac{π}{4}$,∴ω=2.
再根據(jù)五點法作圖,可得2•$\frac{π}{3}$+φ=π,∴φ=$\frac{π}{3}$,f(x)=$\sqrt{3}$sin(2x+$\frac{π}{3}$).
(2)當x∈[0,$\frac{π}{2}$]時,2x+$\frac{π}{3}$∈[$\frac{π}{3}$ $\frac{4π}{3}$,],sin(2x+$\frac{π}{3}$)∈[-$\frac{\sqrt{3}}{2}$ 1],
∴f(x)∈[-$\frac{3}{2}$,$\sqrt{3}$].

點評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點坐標求出A,由周期求出ω,由五點法作圖求出φ的值,正弦函數(shù)的定義域和值域,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

3.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象如圖所示,則以下步驟可以得到函數(shù)f(x)的圖象的是( 。
A.將y=sinx的圖象上的點縱坐標不變,橫坐標變成原來的2倍,然后再向左平移$\frac{π}{6}$個單位
B.將y=sinx的圖象上的點縱坐標不變,橫坐標變成原來的2倍,然后再向右平移$\frac{π}{6}$個單位
C.將y=sinx的圖象上的點縱坐標不變,橫坐標變成原來的$\frac{1}{2}$,然后再向右平移$\frac{π}{12}$個單位
D.將y=sinx的圖象上的點縱坐標不變,橫坐標變成原來的$\frac{1}{2}$,然后再向左平移$\frac{π}{12}$個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.數(shù)學與文學有許多奇妙的聯(lián)系,如詩中有回文詩:“兒憶父兮妻憶夫”,既可以順讀也可以逆讀,數(shù)學中有回文數(shù),如343,12521等,兩位數(shù)的回文數(shù)有11、22、33、…99共9個,則三位數(shù)的回文數(shù)中,偶數(shù)的概率是$\frac{4}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.“因為偶函數(shù)的圖象關(guān)于y軸對稱,而函數(shù)f(x)=x2+x是偶函數(shù),所以f(x)=x2+x的圖象關(guān)于y軸對稱”,在上述演繹推理中,所得結(jié)論錯誤的原因是( 。
A.大前提錯誤B.小前提錯誤
C.推理形式錯誤D.大前提與推理形式都錯誤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.函數(shù)y=2sin(πx+$\frac{π}{2}}$)的最小正周期是2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.實數(shù)x,y滿足(1+i)x+(1-i)y=2,設z=x+yi,則下列說法錯誤的是( 。
A.z在復平面內(nèi)對應的點在第一象限B.|z|=$\sqrt{2}$
C.z的虛部是iD.z的實部是1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.若奇函數(shù)f(x)滿足對任意x∈R都有f(2+x)+f(2-x)=0,且f(1)=9,則f(2014)+f(2015)+f(2016)的值為-9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.在如圖所示的幾何體中,四邊形ABCD為矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2FE=1,點P在棱DF上.
(1)求證:AD⊥BF;
(2)若二面角D-AP-C的余弦值為$\frac{\sqrt{6}}{3}$,求PF的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.過四面體ABCD的頂點D作半徑為1的球,該球與四面體ABCD的外接球相切于點D,且與平面ABC相切,若AD=2$\sqrt{3}$,∠BAD=∠CAD=45°,∠BAC=60°,則四面體ABCD的外接球的半徑為3.

查看答案和解析>>

同步練習冊答案