【題目】如圖,四棱錐中, ,側(cè)面為等邊三角形, , .

(Ⅰ)證明: 平面;

(Ⅱ)求與平面所成的角的大小.

【答案】(1)見解析(2)

【解析】試題分析:(Ⅰ)由問題,可根據(jù)線面垂直判定定理的條件要求,從題目條件去尋相關(guān)的信息,先證線線垂直,即,從而問題可得解;(Ⅱ)要求直線與平面所成角,一般步驟是先根據(jù)圖形特點(diǎn)作出所求的線面角,接著將該所在三角形的其他要素(包括角、邊或是三角形的形狀等)算出來,再三角形的性質(zhì)或是正弦定理、余弦定理來進(jìn)行運(yùn)算,從問題得于解決(類似問題也可以考慮采用坐標(biāo)法來解決).

試題解析:(Ⅰ)取的中點(diǎn)E,連接,

則四邊形為矩形,

所以

所以,

因?yàn)閭?cè)面為等邊三角形, ,

所以,且,

又因?yàn)?/span>

所以

所以.

,

所以平面.

(Ⅱ)

過點(diǎn)于點(diǎn),

因?yàn)?/span>,

所以平面.

平面

由平面與平面垂直的性質(zhì),

平面,

中,由,

,

所以.

過點(diǎn)平面,連接,

即為與平面所成的角,

因?yàn)?/span>平面,

所以平面,

平面,

所以.

中,由,

求得.

中, ,

所以,

,

,

解得,

所以,

與平面所成角的正弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知坐標(biāo)平面上點(diǎn)與兩個(gè)定點(diǎn) 的距離之比等于.

(1)求點(diǎn)的軌跡方程,并說明軌跡是什么圖形;

(2)記(1)中的軌跡為,過點(diǎn)的直線所截得的線段的長為,求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)時(shí),解關(guān)于的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班同學(xué)利用國慶節(jié)進(jìn)行社會(huì)實(shí)踐,對(duì)歲的人群隨機(jī)抽取人進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,若生活習(xí)慣符合低碳觀念的稱為低碩族,否則稱為非低碳族,得到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:

組數(shù)

分組

低碳族的人數(shù)

占本組的頻率

第一組

120

0.6

第二組

195

第三組

100

0.5

第四組

0.4

第五組

30

0.3

第六組

15

0.3

(1)補(bǔ)全頻率分布直方圖并求的值(直接寫結(jié)果);

(2)從年齡段在低碳族中采用分層抽樣法抽取6人參加戶外低碳體驗(yàn)活動(dòng),其中選取2人作為領(lǐng)隊(duì),求選取的2名領(lǐng)隊(duì)中至少有1人年齡在歲的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位有200名職工,現(xiàn)要從中抽取40名職工作樣本,用系統(tǒng)抽樣法,將全體職工隨機(jī)按1200編號(hào),并按編號(hào)順序平均分為40組(15號(hào),610號(hào),196200號(hào)).若第5組抽出的號(hào)碼為22,則第8組抽出的號(hào)碼應(yīng)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在長方體中,分別是的中點(diǎn),,過三點(diǎn)的的平面截去長方體的一個(gè)角后.得到如圖所示的幾何體,且這個(gè)幾何體的體積為

(1)求證:平面

(2)求的長;

(3)在線段上是否存在點(diǎn),使直線垂直,如果存在,求線段的長,如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)坐標(biāo)分別是、,并且經(jīng)過點(diǎn).

(1)求橢圓的方程;

(2)若直線與圓相切,并與橢圓交于不同的兩點(diǎn)、.當(dāng),且滿足時(shí),求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)計(jì)一份學(xué)生食堂飯菜質(zhì)量、飯菜價(jià)格、服務(wù)質(zhì)量滿意程度的調(diào)查問卷.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)一批產(chǎn)品需要原材料500噸,每噸原材料可創(chuàng)造利潤12萬元,該公司通過設(shè)備升級(jí),生產(chǎn)這批產(chǎn)品所需原材料減少了噸,且每噸原材料創(chuàng)造的利潤提高了;若將少用的噸原材料全部用于生產(chǎn)公司新開發(fā)的產(chǎn)品,每噸原材料創(chuàng)造的利潤為萬元,其中

(1)若設(shè)備升級(jí)后生產(chǎn)這批產(chǎn)品的利潤不低于原來生產(chǎn)該批產(chǎn)品的利潤,求的取值范圍;

(2)若生產(chǎn)這批產(chǎn)品的利潤始終不高于設(shè)備升級(jí)后生產(chǎn)這批產(chǎn)品的利潤,求的最大值.

查看答案和解析>>

同步練習(xí)冊答案