【題目】當(dāng)時(shí),解關(guān)于的不等式.
【答案】詳見解析
【解析】
試題分析:本題考查含參數(shù)一元二次不等式問題,由于,所以方程的兩個(gè)實(shí)根分別為,分三種情況進(jìn)行討論,當(dāng),即時(shí),結(jié)合相應(yīng)函數(shù)圖象可知,不等式的解集為,當(dāng),即時(shí),結(jié)合相應(yīng)函數(shù)圖象可知,不等式的解集為,當(dāng),即時(shí),結(jié)合相應(yīng)函數(shù)圖象可知,不等式的解集為,本題主要考查分類討論思想方法、考查數(shù)形結(jié)合思想方法,需要注意的是在對(duì)參數(shù)討論時(shí),要做到“不重不漏”,考查學(xué)生基本運(yùn)算能力,屬于常規(guī)考查.
試題解析:由于a>0,所以原不等式可化為(x-2)(x-)>0,
由=2可得a=1,
當(dāng)0<a<1時(shí),解不等式可得x<2或x>;
當(dāng)a=1時(shí),解不等式得x∈R且x≠2;
當(dāng)a>1時(shí),解不等式得x<或x>2.
綜上所述,當(dāng)0<a<1時(shí),原不等式的解集為{x|x>或x<2},
當(dāng)a=1時(shí),原不等式的解集為{x|x≠2},
當(dāng)a>1時(shí),原不等式的解集為{x|x>2或x<}
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)人連續(xù)射擊三次,事件“至少有一次擊中目標(biāo)”的對(duì)立事件是( )
A.至多有一次擊中目標(biāo)B.三次都擊不中目標(biāo)
C.三次都擊中目標(biāo)D.只有一次擊中目標(biāo)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—1:幾何證明選講
如圖,已知AP是⊙O的切線,P為切點(diǎn),AC是⊙O的割線,與⊙O交于B、C兩點(diǎn),圓心O在∠PAC的內(nèi)部,點(diǎn)M是BC的中點(diǎn).
(1)證明:A、P、O、M四點(diǎn)共圓;
(2)求∠OAM+∠APM的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,短軸長為2,且兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)恰為一個(gè)正方形的頂點(diǎn).過右焦點(diǎn)與軸不垂直的直線交橢圓于兩點(diǎn).
(1)求橢圓的方程;
(2)當(dāng)直線的斜率為1時(shí),求的面積;
(3)在線段上是否存在點(diǎn),使得以為鄰邊的平行四邊形是菱形?若存在,求出的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解我國各景點(diǎn)在大眾中的熟知度,隨機(jī)對(duì)~歲的人群抽樣了人,回答問題“我國的“五岳”指的是哪五座名山?”統(tǒng)計(jì)結(jié)果如下圖表.
組號(hào) | 分組 | 回答正確的人數(shù) | 回答正確的人數(shù)占本組的頻率 |
第1組 | [15,25) | 0.5 | |
第2組 | [25,35) | 18 | |
第3組[ | [35,45) | 0.9 | |
第4組 | [45,55) | 9 | 0.36 |
第5組 | [55,65] | 3 |
(1)分別求出的值;
(2)從第組回答正確的人中用分層抽樣的方法抽取人,求第組每組各抽取多少人;
(3)在(2)的條件下抽取的人中,隨機(jī)抽取人,求所抽取的人中恰好沒有第組人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市戶居民的月平均用電量(單位:度),以, , , , , , 分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為, , , 的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在邊長為3的正三角形中, 分別是邊上的點(diǎn),滿足(如圖),將折起到的位置上,連接(如圖).
(1)在線段A1C上是否存在點(diǎn)Q,使得面QFP//面A1EB,證明你的結(jié)論;
(2)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是一個(gè)公差為d(d≠0)的等差數(shù)列,它的前10項(xiàng)和S10=110,且a1,a2,a4成等比數(shù)列。
(1)證明:a1=d;
(2)求公差d的值和數(shù)列{an}的通項(xiàng)公式。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com