分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),根據(jù)y=f(x)在x=-2和x=-ln2處有極值,得到關(guān)于a,b的方程組,解出即可;
(Ⅱ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極大值即可.
解答 解:(Ⅰ)f'(x)=ex(ax+b+a)-2x-4
因?yàn)榍y=f(x)在x=-2和x=-ln2處有極值,
所以$\left\{\begin{array}{l}f'({-2})=0\\ f'({-ln2})=0\end{array}\right.$,
即$\left\{\begin{array}{l}{e^{-2}}({-2a+b+a})=0\\{e^{-ln2}}({-aln2+b+a})-2(-ln2)-4=0\end{array}\right.$,
解得a=b=4,
經(jīng)檢驗(yàn)a=b=4符合題意,
所以a=b=4;
(Ⅱ)由(Ⅰ)得:f(x)=4ex(x+1)-x2-4x,
f′(x)=4(x+2)(ex-$\frac{1}{2}$),
令f′(x)>0,解得:x>-ln2或x<-2,
令f′(x)<0,解得:-2<x<-ln2,
故f(x)在(-∞,-2)遞增,在(-2,-ln2)遞減,在(-ln2,+∞)遞增,
故x=-2時(shí),函數(shù)f(x)取極大值,極大值是f(-2)=4(1-e-2).
點(diǎn)評 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,-1) | B. | (-2,1) | C. | (1,-2) | D. | (-1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | -2 | C. | 0或-2 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | g(x)=2x2-3x | B. | g(x)=3x2-2x | C. | g(x)=3x2+2x | D. | g(x)=-3x2-2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com