正方體ABCD-A1B1C1D1中,BB1與平面ACD1所成的角的余弦值為
A.B.C.D.
D

試題分析:正方體上下底面中心的連線平行于BB1,上下底面中心的連線平面ACD1所成角即為線面角,直角三角形中求出此角的余弦值.如圖,設上下底面的中心分別為O1,O;
O1O與平面ACD1所成角就是BB1與平面ACD1所成角,則可知,故選D.

點評:本小題主要考查正方體的性質、直線與平面所成的角、點到平面的距離的求法,利用等體積轉化求出D到平面ACD1的距離是解決本題的關鍵所在,這也是轉化思想的具體體現(xiàn)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在四邊形ABCD中,AC平分∠DAB,∠ABC=600,AC=7,AD=6,S△ADC=
求AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,在平行四邊ABCD中,,,若將其沿BD折成直二面角 A-BD-C,則三棱錐A—BCD的外接球的體積為_______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知四棱錐的底面為平行四邊形,分別是棱的中點,平面與平面交于,求證:

(1)平面;
(2)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設m,n是異面直線,則(1)一定存在平面α,使mα,且n∥α;(2)一定存在平面α,使mα,且n⊥α;(3)一定存在平面γ,使得m,n到平面γ距離相等;(4)一定存在無數(shù)對平面α和β,使mα,nβ且α⊥β。上述4個命題中正確命題的序號是(   )
A.(1)(2)(3)B.(1)(2)(4)C.(1)(3)(4)D.(1)(4)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)如圖:

(1)求的大。
(2)當時,判斷的形狀,并求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐中,底面ABCD是正方形,側棱底面ABCD,,EPC的中點,作PB于點F

(I) 證明: PA∥平面EDB
(II) 證明:PB⊥平面EFD;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)如圖,在長方體中,已知上下兩底面為正方形,且邊長均為1;側棱,為中點,中點,上一個動點.

(Ⅰ)確定點的位置,使得;
(Ⅱ)當時,求二面角的平
面角余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若兩直線相交,且∥平面,則的位置關系是________.

查看答案和解析>>

同步練習冊答案