1.近幾年,由于環(huán)境的污染,霧霾越來(lái)越嚴(yán)重,某環(huán)保公司銷(xiāo)售一種PM2.5顆粒物防護(hù)口罩深受市民歡迎.已知這種口罩的進(jìn)價(jià)為40元,經(jīng)銷(xiāo)過(guò)程中測(cè)出年銷(xiāo)售量y(萬(wàn)件)與銷(xiāo)售單價(jià)x(元)存在如圖所示的一次函數(shù)關(guān)系,每年銷(xiāo)售這種口罩的總開(kāi)支z(萬(wàn)元)(不含進(jìn)價(jià))與年銷(xiāo)量y(萬(wàn)件)存在函數(shù)關(guān)系z(mì)=10y+42.5.
(I)求y關(guān)于x的函數(shù)關(guān)系;
(II)寫(xiě)出該公司銷(xiāo)售這種口罩年獲利W(萬(wàn)元)關(guān)于銷(xiāo)售單價(jià)x(元)的函數(shù)關(guān)系式
(年獲利=年銷(xiāo)售總金額-年銷(xiāo)售口罩的總進(jìn)價(jià)-年總開(kāi)支金額);當(dāng)銷(xiāo)售單價(jià)x為何值時(shí),年獲利最大?最大獲利是多少?
(III)若公司希望該口罩一年的銷(xiāo)售獲利不低于57.5萬(wàn)元,則該公司這種口罩的銷(xiāo)售單價(jià)應(yīng)定在什么范圍?在此條件下要使口罩的銷(xiāo)售量最大,你認(rèn)為銷(xiāo)售單價(jià)應(yīng)定為多少元?

分析 (I)由圖象可知y關(guān)于x的函數(shù)關(guān)系式是一次函數(shù),設(shè)y=kx+b,用“兩點(diǎn)法”可求解析式;
(II)根據(jù)年獲利=年銷(xiāo)售總金額一年銷(xiāo)售產(chǎn)品的總進(jìn)價(jià)一年總開(kāi)支金額,列出函數(shù)關(guān)系式;
(III)令W≥57.5,從而確定銷(xiāo)售單價(jià)x的范圍,及二次函數(shù)w最大時(shí),x的值.

解答 解:(I)由題意,設(shè)y=kx+b,圖象過(guò)點(diǎn)(70,5),(90,3),$\left\{\begin{array}{l}{5=70k+b}\\{3=90k+b}\end{array}\right.$,得k=-$\frac{1}{10}$,b=12,
∴$y=-\frac{1}{10}x+12$…(4分)
(II) 由題意,得
w=y(x-40)-z
=y(x-40)-(10y+42.5)
=(-$\frac{1}{10}$x+12)(x-40)-10(-$\frac{1}{10}$x+12)-42.5
=-0.1x2+17x-642.5=-$\frac{1}{10}$(x-85)2+80.
當(dāng)銷(xiāo)售單價(jià)為85元時(shí),年獲利最大,最大值為80萬(wàn)元…(8分)
(III)令W≥57.5,-0.1x2+17x-642.5≥57.5,…(9分)
整理得x2-170x+7000≤0,解得70≤x≤100.…(10分)
故要使該口罩一年的銷(xiāo)售獲利不低于57.5萬(wàn)元,單價(jià)應(yīng)在70元到100元之間.…(11分)
又因?yàn)殇N(xiāo)售單價(jià)越低,銷(xiāo)售量越大,所以要使銷(xiāo)售量最大且獲利不低于57.5萬(wàn)元,銷(xiāo)售單價(jià)應(yīng)定為70元.      …(12分)

點(diǎn)評(píng) 本題考查點(diǎn)的坐標(biāo)的求法及一次函數(shù)、二次函數(shù)的實(shí)際應(yīng)用.此題為數(shù)學(xué)建模題,借助二次函數(shù)解決實(shí)際問(wèn)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.在正方體ABCD-A1B1C1D1中,異面直線AD,BD1所成角的余弦值為$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若將函數(shù)f(x)=$\frac{1}{2}$sin(2x+$\frac{π}{3}$)圖象上的每一個(gè)點(diǎn)都向左平移$\frac{π}{3}$個(gè)單位,得到g(x)的圖象,則函數(shù)g(x)的單調(diào)遞增區(qū)間為( 。
A.[kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$](k∈Z)B.[kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$](k∈Z)
C.[kπ-$\frac{2π}{3}$,kπ-$\frac{π}{6}$](k∈Z)D.[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.如果x=[x]+{x},[x]∈Z,0≤{x}<1,就稱(chēng)[x]表示x的整數(shù)部分,{x}表示x的小數(shù)部分.已知數(shù)列{an}滿足a1=$\sqrt{5}$,an+1=[an]+$\frac{1}{\{{a}_{n}\}}$,則a2017等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.設(shè)向量$\vec a=(1,-1)$,$\vec b=(-1,2)$,則$(2\overrightarrow a+\overrightarrow b)•\overrightarrow a$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知平行四邊形三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-3,0),B(2,-2),C(5,2),則第四個(gè)頂點(diǎn)D的坐標(biāo)不可能是(  )
A.(10,0)B.(0,4)C.(-6,-4)D.(6,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)$y=\sqrt{1-\frac{1}{2^x}}$的定義域?yàn)閇0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.求斜率是直線y=-$\sqrt{3}$x+1的斜率的-$\frac{1}{3}$,且分別滿足下列條件的直線方程
(1)經(jīng)過(guò)點(diǎn)($\sqrt{3}$,-1);
(2)在y軸上的截距為-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知$f(x)={({x+1})^2}\;,\;\;g(x)=\frac{x-1}{x+1}$,則f(x)•g(x)=x2-1,(x≠-1).

查看答案和解析>>

同步練習(xí)冊(cè)答案