15.已知$f(x)={({x+1})^2}\;,\;\;g(x)=\frac{x-1}{x+1}$,則f(x)•g(x)=x2-1,(x≠-1).

分析 根據(jù)f(x),g(x)的解析式,求出f(x)•g(x)的解析式即可.

解答 解:∵$f(x)={({x+1})^2}\;,\;\;g(x)=\frac{x-1}{x+1}$,
∴f(x)•g(x)=(x+1)(x-1)=x2-1,(x≠-1),
故答案為:x2-1,(x≠-1).

點(diǎn)評 本題考查了求函數(shù)的解析式問題,注意函數(shù)的定義域問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.近幾年,由于環(huán)境的污染,霧霾越來越嚴(yán)重,某環(huán)保公司銷售一種PM2.5顆粒物防護(hù)口罩深受市民歡迎.已知這種口罩的進(jìn)價為40元,經(jīng)銷過程中測出年銷售量y(萬件)與銷售單價x(元)存在如圖所示的一次函數(shù)關(guān)系,每年銷售這種口罩的總開支z(萬元)(不含進(jìn)價)與年銷量y(萬件)存在函數(shù)關(guān)系z=10y+42.5.
(I)求y關(guān)于x的函數(shù)關(guān)系;
(II)寫出該公司銷售這種口罩年獲利W(萬元)關(guān)于銷售單價x(元)的函數(shù)關(guān)系式
(年獲利=年銷售總金額-年銷售口罩的總進(jìn)價-年總開支金額);當(dāng)銷售單價x為何值時,年獲利最大?最大獲利是多少?
(III)若公司希望該口罩一年的銷售獲利不低于57.5萬元,則該公司這種口罩的銷售單價應(yīng)定在什么范圍?在此條件下要使口罩的銷售量最大,你認(rèn)為銷售單價應(yīng)定為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若一條直線和一個平面內(nèi)無數(shù)條直線垂直,則直線和平面的位置關(guān)系是(  )
A.垂直B.平行
C.相交D.平行或相交或垂直或在平面內(nèi)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若0<a<1,b<-1,則函數(shù)f(x)=ax+b的圖象不經(jīng)過(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若函數(shù)f(x)=|x+1|+|x-a|的最小值為5,則實(shí)數(shù)a=4或-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知F1,F(xiàn)2分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),若橢圓外存在一點(diǎn)P,滿足$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,則橢圓C的離心率e的取值范圍是[$\frac{\sqrt{2}}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求下列各式的值:
(1)${2^{4+{{log}_2}3}}$
(2)${0.064^{-\frac{1}{3}}}-{(-\frac{7}{8})^0}+{[{(-2)^3}]^{-\frac{4}{3}}}+{16^{-0.75}}+{0.01^{\frac{1}{2}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若函數(shù)f(x)=-x3+6x2+m的極小值為23,則實(shí)數(shù)m等于23.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知F是拋物線y2=16x的焦點(diǎn),A,B是該拋物線上的兩點(diǎn),|AF|+|BF|=12,則線段AB中點(diǎn)到y(tǒng)軸的距離為(  )
A.8B.6C.2D.4

查看答案和解析>>

同步練習(xí)冊答案