函數(shù)y=
5-2sinx
2+sinx
的最大值是
 
考點(diǎn):三角函數(shù)的最值
專題:計(jì)算題,三角函數(shù)的圖像與性質(zhì)
分析:將函數(shù)化為:y=-2+
9
2+sinx
,再由正弦函數(shù)的值域,即可得到最大值.
解答: 解:y=
5-2sinx
2+sinx

=-2+
9
2+sinx
,
當(dāng)sinx=-1,即x=2kπ-
π
2
,k∈Z,
y取得最大值,且為-2+9=7.
故答案為:7.
點(diǎn)評(píng):本題考查分式函數(shù)的最值,考查正弦函數(shù)的值域的運(yùn)用,考查運(yùn)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,平面四邊形ABCD中,AB=AD=CD=1,BD=
2
,
BD⊥CD,將其沿對(duì)角線BD折成四面體A-BCD,使平面ABD⊥平面BCD,則下列說法中不正確的是( 。
A、平面ACD⊥平面ABD
B、AB⊥CD
C、平面ABC⊥平面ACD
D、AB∥平面ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}的首項(xiàng)a1=1002,公比q=
1
2
,記Pn=a1•a2•…•an,則Pn達(dá)到最大值時(shí),n的值為( 。
A、8B、9C、10D、11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式x2-2x-3<0的解集為A,不等式|x+1|<3的解集為B,不等式x2+ax+b<0的解集為A∩B,那么a+b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓的方程為x2+y2-6x-8y=0.設(shè)該圓過點(diǎn)(-1,4)的最長(zhǎng)弦和最短弦分別為AC和BD,則四邊形ABCD的面積為( 。
A、15B、30C、45D、60

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,M,N分別為AC,PC上的點(diǎn),且MN∥平面PAD,則(  )
A、MN∥PD
B、MN∥PA
C、MN∥AD
D、以上均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2lnx+
1
2
ax2
-(2a+1)x(a>0)
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求f(x)在(0,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sinx+cos2x的圖象為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程x3-2x2+3x-6=0在區(qū)間[-2,4]上的根必是屬于區(qū)間
 

查看答案和解析>>

同步練習(xí)冊(cè)答案