已知不等式x2-2x-3<0的解集為A,不等式|x+1|<3的解集為B,不等式x2+ax+b<0的解集為A∩B,那么a+b=
 
考點:交集及其運算
專題:集合
分析:由已知條件推導(dǎo)出A={x|-1<x<3},B={x|-4<x<2},從而不等式x2+ax+b<0的解集為A∩B={x|-1<x<2},進(jìn)而-1,2是方程x2+ax+b=0的解,由此能求出a+b=-3.
解答: 解:∵不等式x2-2x-3<0的解集為A,不等式|x+1|<3的解集為B,不等式x2+ax+b<0的解集為A∩B,
∴A={x|-1<x<3},B={x|-4<x<2},
∴不等式x2+ax+b<0的解集為A∩B={x|-1<x<2},
∴-1,2是方程x2+ax+b=0的解,
-1+2=-a
-1×2=b
,解得a=-1,b=-2,
∴a+b=-3.
故答案為:-3.
點評:本題考查兩個實數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意不等式性質(zhì)的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若全集U={-1,-2,-3,-4},M={-2,-3},則∁UM(  )
A、{-1,-2,-3}
B、{-2}
C、{-4}
D、{-1,-4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一次人才招聘會上,有A,B,C三種不同的技工面向社會招聘,已知某技術(shù)人員應(yīng)聘A,B,C三種技工被錄用的概率分別是0.8、0.5、0.2(允許技工人員同時被多種技工錄用).
(1)求該技術(shù)人員被錄用的概率;
(2)設(shè)ξ表示該技術(shù)人員被錄用的工種數(shù)與未被錄用的工種數(shù)的乘積,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax2+bx+c(a,b,c∈R),f(1)=-
a
2
,
(1)若f(x)<1的解集為(0,3),求f(x)的表達(dá)式;
(2)若a>0,求證:函數(shù)f(x)在區(qū)間(0,2)內(nèi)至少有一個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,角A、B、C所對的邊分別為a、b、c,△ABC的面積為S,且
a
b+c
+
b
a+c
=1,
(1)求角C的大;
(2)若c2
3
ab-
3
2
b2,且c=
6
,求S的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在100件產(chǎn)品中有3件次品,從中任取2件進(jìn)行檢驗,至少有1件次品的不同取法有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
5-2sinx
2+sinx
的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-e-x,其中e是自然對數(shù)的底數(shù).
(1)證明:f(x)是R上的奇函數(shù);
(2)若函數(shù)g(x)=e2x+e-2x-6f(x),求g(x)在區(qū)間[0,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M(x1,y1)是雙曲線
x2
a2
-
y2
b2
=1右支上任意一點,則點M到雙曲線兩焦點F1、F2的距離分別為
 
(用x1,y1,a,b表示).

查看答案和解析>>

同步練習(xí)冊答案