6.已知空間幾何體ABCDEF中,四邊形ABCD是正方形,AF⊥平面ABCD,BE⊥平面ABCD,AB=AF=2BE.
(Ⅰ)求證:BD∥平面CEF;
(Ⅱ)求CF與平面ABF所成角的正弦值.

分析 (1)取AF的中點(diǎn)G連結(jié)BG,GD,EG,證明BG∥EF,CD∥EG,CE∥DG,結(jié)合CE∩EF=E,BG∩DG=G,得到平面BDG∥平面CEF,推出BD∥平面CEF.
(2)設(shè)AB=a,連結(jié)BF,說(shuō)明∠BFC為CF與平面ABEF所成角的平面角,在Rt△CBF中,求解即可.

解答 (1)證明:取AF的中點(diǎn)G連結(jié)BG,GD,EG
∵AF⊥平面ABCD,BE⊥平面ABCD,
∴BE∥GF且BE=GF,∴四邊形BEFG為平行四邊形,
∴BG∥EF,
同理可證四邊形ABEG為平行四邊形,∴EG∥AB且EG=AB,
又CD∥AB且CD=AB,∴CD∥EG且CD=EG,∴四邊形CDGE為平行四邊形,∴CE∥DG且EG=AB,
又∵CE∩EF=E,BG∩DG=G,∴平面BDG∥平面CEF,
∴BD∥平面CEF…(6分)
(2)解:設(shè)AB=a,則$AC=\sqrt{2}a,\;CF=\sqrt{3}a$,
連結(jié)BF,易證CB⊥平面ABEF,∴∠BFC為CF與平面ABEF所成角的平面角,
在Rt△CBF中,$sin∠BFC=\frac{BC}{CF}=\frac{AB}{CF}=\frac{a}{{\sqrt{3}a}}=\frac{{\sqrt{3}}}{3}$…(12分)

點(diǎn)評(píng) 本題考查直線與平面所成角,直線與平面平行,平面與平面平行的判定定理與性質(zhì)定理的應(yīng)用,考查空間想象能力以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.一臺(tái)機(jī)器使用時(shí)間較長(zhǎng),但還可以使用.它按不同的轉(zhuǎn)速生產(chǎn)出來(lái)的某機(jī)械零件有一些會(huì)有缺點(diǎn),每小時(shí)生產(chǎn)有缺點(diǎn)零件的多少,隨機(jī)器運(yùn)轉(zhuǎn)的速度而變化,如表為抽樣試驗(yàn)結(jié)果:
轉(zhuǎn)速x(轉(zhuǎn)/秒)1614128
每小時(shí)生產(chǎn)有
缺點(diǎn)的零件數(shù)y(件)
11985
(1)用相關(guān)系數(shù)r對(duì)變量y與x進(jìn)行相關(guān)性檢驗(yàn);
(2)如果y與x有線性相關(guān)關(guān)系,求線性回歸方程;
(3)若實(shí)際生產(chǎn)中,允許每小時(shí)的產(chǎn)品中有缺點(diǎn)的零件最多為10個(gè),那么,機(jī)器的運(yùn)轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)?(結(jié)果保留整數(shù))
參考數(shù)據(jù):$\sum_{i=1}^{4}$xiyi=438,t=m2-1,$\sum_{i=1}^{4}$yi2=291,$\sqrt{656.25}$≈25.62.
參考公式:相關(guān)系數(shù)計(jì)算公式:r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}•\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$
回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中斜率和截距的最小二乘估計(jì)公式分別為:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知:f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],且a+b≠0時(shí),有$\frac{f(a)+f(b)}{a+b}$>0恒成立.
(Ⅰ)用定義證明函數(shù)f(x)在[-1,1]上是增函數(shù);
(Ⅱ)解不等式:$f(x+\frac{1}{2})$<f(1-x);
(Ⅲ)若f(x)≤m2-2m+1對(duì)所有x∈[-1,1]恒成立,求:實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.(1)求不等式的解集:-x2+4x+5<0
(2)解關(guān)于x的不等式:x2+(1-a)x-a<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.圓C:x2+y2-6x+8y+24=0關(guān)于直線 l:x-3y-5=0對(duì)稱的圓的方程是( 。
A.(x+1)2+(y+2)2=1B.(x-1)2+(y-2)2=1C.(x-1)2+(y+2)2=1D.(x+1)2+(y-2)2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.2011年,國(guó)際數(shù)學(xué)協(xié)會(huì)正式宣布,將每年的3月14日設(shè)為國(guó)際數(shù)學(xué)節(jié),來(lái)源是中國(guó)古代數(shù)學(xué)家祖沖之的圓周率,為慶祝該節(jié)日,某校舉辦的數(shù)學(xué)嘉年華活動(dòng)中,設(shè)計(jì)了如下有獎(jiǎng)闖關(guān)游戲:參賽選手按第一關(guān)、第二關(guān)、第三關(guān)的順序依次闖關(guān),若闖關(guān)成功,分別獲得5個(gè)學(xué)豆、10個(gè)學(xué)豆、20個(gè)學(xué)豆的獎(jiǎng)勵(lì),游戲還規(guī)定,當(dāng)選手闖過(guò)一關(guān)后,可以選擇帶走相應(yīng)的學(xué)豆,結(jié)束游戲;也可以選擇繼續(xù)闖下一關(guān),若有任何一關(guān)沒有闖關(guān)成功,則全部學(xué)豆歸零,游戲結(jié)束.設(shè)選手甲第一關(guān)、第二關(guān)、第三關(guān)的概率分別為$\frac{3}{4}$,$\frac{2}{3}$,$\frac{1}{2}$,選手選擇繼續(xù)闖關(guān)的概率均為$\frac{1}{2}$,且各關(guān)之間闖關(guān)成功互不影響
(1)求選手獲得5個(gè)學(xué)豆的概率;
(2)求選手甲第一關(guān)闖關(guān)成功且所得學(xué)豆為零的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.解不等式:
(1)$\frac{x+3}{1-2x}$≥0
(2)$\frac{5}{{x_{\;}^2-10x+21}}$>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知二次函數(shù)f(x)=ax2-x+c(x∈R)的值域?yàn)閇0,+∞),則$\frac{2}{a}$+$\frac{2}{c}$的最小值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.假設(shè)關(guān)于某設(shè)備的使用年限x和所支出的維修費(fèi)用y有如下的統(tǒng)計(jì)資料 若由資料知y對(duì)x呈線性相關(guān)關(guān)系,
使用年限x23456
維修費(fèi)用y2.23.85.56.57.0
參考公式:$\left\{\begin{array}{l}{b=\frac{\sum_{i=1}^{n}({x}_{i}^{2}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}}\\{a=\overline{y}-b\overline{x}}\end{array}\right.$
試求:
(1)線性回歸方程.
(2)估計(jì)使用年限為10年時(shí),維修費(fèi)用大約是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案