15.已知二次函數(shù)f(x)=ax2-x+c(x∈R)的值域?yàn)閇0,+∞),則$\frac{2}{a}$+$\frac{2}{c}$的最小值為8.

分析 先判斷a、c是正數(shù),且ac=$\frac{1}{4}$,把所求的式子變形使用基本不等式求最小值.

解答 解:∵二次函數(shù)f(x)=ax2-x+c的值域?yàn)閇0,+∞),
∴$\left\{\begin{array}{l}{a>0}\\{△=1-4ac=0}\end{array}\right.$,
解得a>0,c>0,ac=$\frac{1}{4}$.
∴$\frac{2}{a}$+$\frac{2}{c}$≥2$\sqrt{\frac{2}{a}•\frac{2}{c}}$=8,當(dāng)且僅當(dāng)a=c=$\frac{1}{2}$時(shí)取等號(hào),
∴$\frac{2}{a}$+$\frac{2}{c}$的最小值為8,
故答案為:8

點(diǎn)評(píng) 本題考查函數(shù)的值域及基本不等式的應(yīng)用,求解的關(guān)鍵就是拆項(xiàng),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求下列各式的值:
(Ⅰ)$|{1+lg0.001}|+\sqrt{{{lg}^2}\frac{1}{3}-4lg3+4}+lg6-lg0.02$.
(Ⅱ)${(-\frac{27}{8})^{-\frac{2}{3}}}+{0.002^{-\frac{1}{2}}}-10{(\sqrt{5}-2)^{-1}}+{(2-\sqrt{3})^0}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知空間幾何體ABCDEF中,四邊形ABCD是正方形,AF⊥平面ABCD,BE⊥平面ABCD,AB=AF=2BE.
(Ⅰ)求證:BD∥平面CEF;
(Ⅱ)求CF與平面ABF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求下列各式的值:
(1)2$\sqrt{3}$×$\root{3}{3\frac{3}{8}}$-$\sqrt{12}$;
(2)lg200+$\frac{1}{2}$lg25+5(lg2+lg5)3-($\frac{1}{27}$)${\;}^{\frac{1}{3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知拋物線y2=8x的焦點(diǎn)是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{3}$=1(a>0)的右焦點(diǎn),則雙曲線的右準(zhǔn)線方程x=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若圓C1:x2+y2=1與圓C2:(x-3)2+(y-4)2=25-m外切,則m=( 。
A.9B.19C.21D.-11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在矩形ABCD中,以DA所在直線為x軸,以DA中點(diǎn)O為坐標(biāo)原點(diǎn),建立如圖所示的平面直角坐標(biāo)系.已知點(diǎn)B的坐標(biāo)為(3,2),E、F為AD的兩個(gè)三等分點(diǎn),AC和BF交于點(diǎn)G,△BEG的外接圓為⊙H.
(1)求證:EG⊥BF;
(2)求⊙H的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在直角坐標(biāo)系中,以點(diǎn)(1,2)為圓心,1為半徑的圓必與y軸相切,與x軸相離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列四個(gè)命題中的真命題為( 。
A.若sin A=sin B,則A=BB.若lgx2=0,則x=1
C.?x∈R,都有x2+1>0D.?x0∈Z,使1<4x0<3

查看答案和解析>>

同步練習(xí)冊(cè)答案