分析 利用線面平行與垂直的判定定理和性質(zhì)定理、正方形的性質(zhì)、異面直線所成的角即可判定.
解答 解:在四面體ABCD中,∵截面PQMN是正方形,∴PQ∥MN,PQ?平面ACD,MN?平面ACD,∴PQ∥平面ACD.
∵平面ACB∩平面ACD=AC,∴PQ∥AC,可得AC∥平面PQMN.
同理可得BD∥平面PQMN,BD∥PN.∵PN⊥PQ,∴AC⊥BD.
由BD∥PN,∴∠MPN是異面直線PM與BD所成的角,且為45°.
由上面可知:BD∥PN,PQ∥AC.$\frac{PN}{BD}=\frac{AN}{AD},\frac{MN}{AC}=\frac{DN}{AD}$
而AN≠DN,PN=MN,∴BD≠AC.
綜上可知:①②④都正確.
故答案為:①②④.
點評 本題考查了線面平行與垂直的判定定理和性質(zhì)定理、正方形的性質(zhì)、異面直線所成的角,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 15 | B. | 30 | C. | 31 | D. | 63 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | $\frac{4}{3}$ | C. | $\sqrt{2}$ | D. | $\frac{8}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{12}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | -2 | C. | -1 | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com