18.如圖是把二進(jìn)制數(shù)11111(2)化為十進(jìn)制數(shù)的一個(gè)程序框圖,則輸出的S=(  )
 
A.15B.30C.31D.63

分析 由已知中的程序語(yǔ)句可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量S的值,模擬程序的運(yùn)行過(guò)程,分析循環(huán)中各變量值的變化情況,可得答案.

解答 解:模擬程序的運(yùn)行,可得
S=1,i=1
滿(mǎn)足條件i≤4,執(zhí)行循環(huán)體,S=3,i=2
滿(mǎn)足條件i≤4,執(zhí)行循環(huán)體,S=7,i=3
滿(mǎn)足條件i≤4,執(zhí)行循環(huán)體,S=15,i=4
滿(mǎn)足條件i≤4,執(zhí)行循環(huán)體,S=31,i=5
不滿(mǎn)足條件i≤4,退出循環(huán),輸出S的值為31.
故選:C.

點(diǎn)評(píng) 本題主要考查了循環(huán)結(jié)構(gòu),是當(dāng)型循環(huán),當(dāng)滿(mǎn)足條件,執(zhí)行循環(huán),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.二項(xiàng)式${(2x-\frac{a}{{\sqrt{x}}})^n}$的展開(kāi)式中所有項(xiàng)二項(xiàng)式系數(shù)和為64,則展開(kāi)式中的常數(shù)項(xiàng)為60,則a的值為( 。
A.2B.±1C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若函數(shù)f(x)=x3-3bx+3b在(0,1)內(nèi)有極小值,則實(shí)數(shù)b的取值范圍是(  )
A.(0,1)B.(-∞,1)C.(0,+∞)D.$(-∞,\frac{1}{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,點(diǎn)P為矩形ABCD所在平面外一點(diǎn),PA⊥平面ABCD,點(diǎn)E為PA的中點(diǎn).
(1)求證:PC∥平面BED;
(2)求異面直線(xiàn)AD與PB所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)函數(shù)f(x)=|2x-1|.
(Ⅰ)解關(guān)于x的不等式f(2x)≤f(x+1);
(Ⅱ)若實(shí)數(shù)a,b滿(mǎn)足a-2b=2,求f(a+1)+f(2b-1)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.70年代中期,美國(guó)各所名牌大學(xué)校園內(nèi),人們都像發(fā)瘋一般,夜以繼日,廢寢忘食地玩一個(gè)數(shù)學(xué)游戲.這個(gè)游戲十分簡(jiǎn)單:任意寫(xiě)出一個(gè)自然數(shù)N,并且按照以下的規(guī)律進(jìn)行變換:如果是個(gè)奇數(shù),則下一步變成3N+1;如果是個(gè)偶數(shù),則下一步變成$\frac{N}{2}$.不單單是學(xué)生,甚至連教師、研究員、教授與學(xué)究都紛紛加入.為什么這個(gè)游戲的魅力經(jīng)久不衰?因?yàn)槿藗儼l(fā)現(xiàn),無(wú)論N是怎樣一個(gè)數(shù)字,最終都無(wú)法逃脫回到谷底1.準(zhǔn)確地說(shuō),是無(wú)法逃出落入底部的4-2-1循環(huán),永遠(yuǎn)也逃不出這樣的宿命.這就是著名的“冰雹猜想”.按照這種運(yùn)算,自然數(shù)27經(jīng)過(guò)十步運(yùn)算得到的數(shù)為(  )
A.142B.71C.214D.107

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知某批零件的長(zhǎng)度誤差(單位:毫米)服從正態(tài)分布N(0,32),從中隨機(jī)取一件,其長(zhǎng)度誤差落在(3,6)內(nèi)的概率為( 。
附:若隨機(jī)變量ξ服從正態(tài)分布N(μ,σ2),則P(μ-σ<ξ<μ+σ)=0.6826,P(μ-2σ<ξ<μ+2σ)=0.9544.
A.0.2718B.0.0456C.0.3174D.0.1359

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知${∫}_{0}^{2}$(3x2-1)dx=m,則$(1-x){({x^2}+\frac{1}{x})^m}$的展開(kāi)式中x4的系數(shù)是-20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.如圖,在四面體ABCD中,截面PQMN是正方形,則下列命題中,正確的為①②④(填序號(hào)).
①AC⊥BD;②AC∥截面PQMN;③AC=BD;④異面直線(xiàn)PM與BD所成的角為45°.

查看答案和解析>>

同步練習(xí)冊(cè)答案