7.如圖是正方體的表面展開圖,則圖中的直線AB,CD在原正方體中是( 。
A.平行B.相交成60°角C.異面成60°角D.異面垂直

分析 把正方體的表面展開圖變形為正方體,確定出圖中的直線AB,CD在原正方體中成角的度數(shù)即可.

解答 解:把正方體的表面展開圖變形為正方體,B與D重合,此時AB=AC=BC,
∴△ABC為等邊三角形,即∠ABC=60°,
則圖中的直線AB,CD在原正方體中是相交成60°角,
故選:B.

點評 此題考查了棱柱的結(jié)構(gòu)特征,弄清正方體與表面展開圖之間的關系是解本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=ax2+xlnx+b,(a,b∈R)的圖象在(1,f(1))處的切線方程為3x-y-4=0.
(1)求實數(shù)a,b的值;
(2)若存在k∈Z,使f(x)>k恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞增的是( 。
A.y=$\frac{1}{x}$B.y=|x|C.y=e-xD.y=-x2+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖所示的幾何體中,AD⊥平面APB,AD∥BC,AP⊥PB.
(1)求證:平面PAD⊥平面PBC;
(2)若AB=BC=2AD=2AP=2,點Q在線段AB上,且AQ=$\frac{1}{4}$AB,求二面角C-PQ-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,在三棱柱ABC-A1B1C1中,平面ABB1A1⊥平面BCC1B1,AB⊥BB1,AB=BC=2,BB1=4,∠BCC1=60°.
(I)求證:C1B⊥AC;
(Ⅱ)求二面角A-B1C-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.在平面直角坐標系xOy中,曲線C1:$\left\{{\begin{array}{l}{x=a+acosφ}\\{y=asinφ}\end{array}}$(φ為參數(shù),實數(shù)a>0),曲線C2:$\left\{{\begin{array}{l}{x=bcosφ}\\{y=b+bsinφ}\end{array}}$(φ為參數(shù),實數(shù)b>0).在以O為極點,x軸的正半軸為極軸的極坐標系中,射線l:θ=α(ρ≥0,0≤α≤$\frac{π}{2}$)與C1交于O、A兩點,與C2交于O、B兩點.當α=0時,|OA|=1;當α=$\frac{π}{2}$時,|OB|=2.
(Ⅰ)求a,b的值;
(Ⅱ)求2|OA|2+|OA|•|OB|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,⊙O的圓心O在Rt△ABC的直角邊BC上,AB、AC都是⊙O的切線,M是AB與⊙O相切的切點,N是⊙O與BC的交點.
(Ⅰ)證明:MN∥AO;
(Ⅱ)若AC=3,MB=2,求CN.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知,△ABC內(nèi)接于圓,延長AB到D點,使得DC=2DB,DC交圓于E點.
(1)求證:AD=2DE;
(2)若AC=DC,求證:DB=BE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)y=f(x)(x∈R)導函數(shù)為f′(x),f(1)=1,且f′(x)>$\frac{1}{2}$,則不等式2f(x)<x+1的解集為( 。
A.{x|x<1}B.{x|x<-1}C.{x|-1<x<1}D.{x|x<-1或x>1}

查看答案和解析>>

同步練習冊答案