設(shè)函數(shù)y=f(x)在區(qū)間(a,b)上的導(dǎo)函數(shù)為f′(x),f′(x)在區(qū)間(a,b)上的導(dǎo)函數(shù)為f″(x),若在區(qū)間(a,b)上f″(x)<0恒成立,則稱(chēng)函數(shù)f(x)在區(qū)間(a,b)“凸函數(shù)“;已知f(x)=
1
12
x4-
m
6
x3-
3
2
x2在(1,3)上為“凸函數(shù)”,則實(shí)數(shù)取值范圍是(  )
A、(-∞,
31
9
B、[
31
9
,5]
C、(-∞,-2)
D、[2,+∞)
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專(zhuān)題:導(dǎo)數(shù)的綜合應(yīng)用
分析:函數(shù)在區(qū)間(1,3)上為“凸函數(shù)”,所以f″(x)<0,即對(duì)函數(shù)y=f(x)二次求導(dǎo),轉(zhuǎn)化為不等式問(wèn)題解決即可;
解答: 解:∵f(x)=
1
12
x4-
m
6
x3-
3
2
x2,
∴f′(x)=
1
3
x3-
m
2
x2-3x,
∴f″(x)=x2-mx-3,
∵f(x)為區(qū)間(1,3)上的“凸函數(shù)”,則有f″(x)=x2-mx-3<0在區(qū)間(1,3)上恒成立,
f″(1)≤0
f″(3)≤0
,
解得m≥2
故選:D.
點(diǎn)評(píng):本題考查函數(shù)的導(dǎo)數(shù)與不等式恒成立問(wèn)題的解法,關(guān)鍵是要理解題目所給信息(新定義),考查知識(shí)遷移與轉(zhuǎn)化能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:?x∈R,使tanx=1,則下列關(guān)于命題¬p的描述中正確的是( 。
A、?x∈R,使tanx≠1
B、?x∉R,使tanx≠1
C、?x∈R,使tanx≠1
D、?x∉R,使tanx≠1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,某工廠(chǎng)生產(chǎn)的一種無(wú)蓋紙筒為圓錐形,現(xiàn)一客戶(hù)訂制該圓錐紙筒,并要求該圓錐紙筒的容積為π立方分米.設(shè)圓錐紙筒底面半徑為r分米,高為h分米.
(1)求出r與h滿(mǎn)足的關(guān)系式;
(2)工廠(chǎng)要求制作該紙筒的材料最省,求最省時(shí)
h
r
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某三棱錐的三視圖如圖所示,則該三棱錐的全面積是( 。
A、4+2
6
B、8
C、4+2
3
D、4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某幾何體的三視圖如圖所示,則它的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

我國(guó)是電力資源較貧乏的國(guó)家之一,各地采用價(jià)格調(diào)控等手段來(lái)達(dá)到節(jié)約用電的目的,某市每戶(hù)每月用電收費(fèi)采用“階梯電價(jià)”的辦法,具體規(guī)定如下:
用電量(千瓦時(shí))電費(fèi)(元|千瓦時(shí))
不超過(guò)200的部分0.56
超過(guò)200至300的部分0.64
超過(guò)300的部分0.96
解答以下問(wèn)題:(1)寫(xiě)出每月電費(fèi)y(元)與用電量x(千瓦時(shí))的函數(shù)關(guān)系式;
(2)若該市某家庭某月的用電費(fèi)為224元,該家庭當(dāng)月的用電量是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)的導(dǎo)函數(shù)是f′(x)=x2-4x+3,則函數(shù)g(x)=f(ax)(0<a<1)的單調(diào)遞減區(qū)間是( 。
A、[loga3,0],[1,+∞)
B、(-∞,loga3],[0,+∞)
C、[a3,a]
D、[loga3,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有10個(gè)乒乓球,將它們?nèi)我夥殖蓛啥,求出這兩堆乒乓球個(gè)數(shù)的乘積,再將每堆乒乓球任意分成兩堆并求出這兩堆乒乓球個(gè)數(shù)的乘積,如此下去,直到不能再分為止,則所有乘積的和為(  )
A、45B、55C、90D、100

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)空間幾何體的三視圖如圖所示,則該幾何體的體積等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案