【題目】2020年春節(jié)期間,因新冠肺炎疫情防控工作需要,、兩社區(qū)需要招募義務(wù)宣傳員,現(xiàn)有、、、六位大學(xué)生和甲、乙、丙三位黨員教師志愿參加,現(xiàn)將他們分成兩個(gè)小組分別派往、兩社區(qū)開展疫情防控宣傳工作,要求每個(gè)社區(qū)都至少安排1位黨員教師及3位大學(xué)生,且由于工作原因只能派往社區(qū),則不同的選派方案種數(shù)為(

A.60B.90

C.120D.150

【答案】A

【解析】

將問題分為社區(qū)選派人和人兩種情況,分別計(jì)算出兩種情況下的選派方案種數(shù),根據(jù)分類加法計(jì)數(shù)原理可求得結(jié)果.

將選派方案分為社區(qū)選派人和人兩種情況,

當(dāng)社區(qū)選派人時(shí),必由名黨員教師,位大學(xué)生構(gòu)成,共有:種選派方案;

當(dāng)社區(qū)選派人時(shí),必由名黨員教師,位大學(xué)生構(gòu)成,共有:種選派方案;

由分類加法計(jì)數(shù)原理可知:不同的選派方案種數(shù)有.

故選:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)討論函數(shù)的單調(diào)性;

2)當(dāng)時(shí),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合,從集合中取出個(gè)不同元素,其和記為;從集合中取出個(gè)不同元素,其和記為.若,則的最大值為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),過曲線上的點(diǎn)處的切線方程為

(1)若函數(shù)處有極值,求的解析式;

(2)在(1)的條件下,求函數(shù)在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】假設(shè)每天從甲地去乙地的旅客人數(shù)X是服從正態(tài)分布N(800,502)的隨機(jī)變量,記一天中從甲地去乙地的旅客人數(shù)不超過900的概率為p0.p0的值為( )

(參考數(shù)據(jù):若XN(μ,σ2),有P(μσ<X≤μσ)0.682 6,P(μ2σ<X≤μ2σ)0.954 4,P(μ3σ<X≤μ3σ)0.997 4.

A.0.954 4B.0.682 6

C.0.997 4D.0.977 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2021年開始,我省將試行“3+1+2“的普通高考新模式,即除語文、數(shù)學(xué)、外語3門必選科目外,考生再從物理、歷史中選1門,從化學(xué)、生物、地理、政治中選2門作為選考科目.為了幫助學(xué)生合理選科,某中學(xué)將高一每個(gè)學(xué)生的六門科目綜合成績按比例均縮放成5分制,繪制成雷達(dá)圖.甲同學(xué)的成績雷達(dá)圖如圖所示,下面敘述一定不正確的是( 。

A.甲的物理成績領(lǐng)先年級(jí)平均分最多

B.甲有2個(gè)科目的成績低于年級(jí)平均分

C.甲的成績從高到低的前3個(gè)科目依次是地理、化學(xué)、歷史

D.對(duì)甲而言,物理、化學(xué)、地理是比較理想的一種選科結(jié)果

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司準(zhǔn)備上市一款新型轎車零配件,上市之前擬在其一個(gè)下屬4S店進(jìn)行連續(xù)30天的試銷.定價(jià)為1000/.試銷結(jié)束后統(tǒng)計(jì)得到該4S店這30天內(nèi)的日銷售量(單位:件)的數(shù)據(jù)如下表:

日銷售量

40

60

80

100

頻數(shù)

9

12

6

3

1)若該4S店試銷期間每個(gè)零件的進(jìn)價(jià)為650/件,求試銷連續(xù)30天中該零件日銷售總利潤不低于24500元的頻率;

2)試銷結(jié)束后,這款零件正式上市,每個(gè)定價(jià)仍為1000元,但生產(chǎn)公司對(duì)該款零件不零售,只提供零件的整箱批發(fā),大箱每箱有60件,批發(fā)價(jià)為550/件;小箱每箱有45件,批發(fā)價(jià)為600/.4S店決定每天批發(fā)兩箱,根據(jù)公司規(guī)定,當(dāng)天沒銷售出的零件按批發(fā)價(jià)的9折轉(zhuǎn)給該公司的另一下屬4S.假設(shè)該4店試銷后的連續(xù)30天的日銷售量(單位:件)的數(shù)據(jù)如下表:

日銷售量

50

70

90

110

頻數(shù)

5

15

8

2

(ⅰ)設(shè)該4S店試銷結(jié)束后連續(xù)30天每天批發(fā)兩大箱,這30天這款零件的總利潤;

(ⅱ)以總利潤作為決策依據(jù),該4S店試銷結(jié)束后連續(xù)30天每天應(yīng)該批發(fā)兩大箱還是兩小箱?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在平行四邊形中,,,中點(diǎn).沿折起使平面平面,得到如圖②所示的四棱錐.

1)求證:平面平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距和短軸長度相等,且過點(diǎn)

(Ⅰ)求橢圓C的方程;

(Ⅱ)圓與橢圓C分別交y軸正半軸于點(diǎn)AB,過點(diǎn),且)且與x軸垂直的直線l分別交圓O與橢圓C于點(diǎn)M,N(均位于x軸上方),問直線AM,BN的交點(diǎn)是否在一條定直線上,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案