5.已知數(shù)列{an}的前n項的和Sn=n2+2n,數(shù)列{bn}是正項等比數(shù)列,且滿足a1=2b1,b3(a3-a1)=b1,n∈N*
(Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)記cn=$\frac{1}{3}{a_n}{b_n}$,求數(shù)列{cn}的前n項和.

分析 (Ⅰ)由當n≥2時,an=Sn-Sn-1,即可求得an=2n+1,當n=1時,a1=S1=3,成立,即可求得數(shù)列{an}通項公式,由b1=$\frac{1}{2}$a1=$\frac{3}{2}$,a3-a1=4,$\frac{_{3}}{_{1}}$=$\frac{1}{{a}_{3}-{a}_{1}}$=$\frac{1}{4}$,即可求得q=$\frac{1}{2}$,根據(jù)等比數(shù)列通項公式,即可求得數(shù)列{bn}的通項公式;
(Ⅱ)由cn=$\frac{1}{3}{a_n}{b_n}$=(2n+1)•($\frac{1}{2}$)n,利用“錯位相減法”即可求得數(shù)列{cn}的前n項和.

解答 解:(Ⅰ)數(shù)列{an}前n項的和Sn=n2+2n,
當n≥2時,Sn-1=(n-1)2+2(n-1),
an=Sn-Sn-1=n2+2n-[(n-1)2+2(n-1)]=2n+1,
當n=1時,a1=S1=3,成立,
∴數(shù)列{an}的通項公式為an=2n+1,
∵數(shù)列{bn}是正項等比數(shù)列,b1=$\frac{1}{2}$a1=$\frac{3}{2}$,a3-a1=4,
∴$\frac{_{3}}{_{1}}$=$\frac{1}{{a}_{3}-{a}_{1}}$=$\frac{1}{4}$,
∴公比為q=$\frac{1}{2}$,
數(shù)列{bn}的通項公式為bn=$\frac{3}{2}$•$\frac{1}{{2}^{n-1}}$=3•($\frac{1}{2}$)n;
(Ⅱ)cn=$\frac{1}{3}{a_n}{b_n}$=(2n+1)•($\frac{1}{2}$)n,
設數(shù)列{cn}的前n項的和為Tn,Tn=3•$\frac{1}{2}$+5•($\frac{1}{2}$)2+…+(2n+1)•($\frac{1}{2}$)n
$\frac{1}{2}$Tn=3•($\frac{1}{2}$)2+5•($\frac{1}{2}$)3+…+(2n-1)•($\frac{1}{2}$)n+(2n+1)•($\frac{1}{2}$)n+1,
兩式相減得:(1-$\frac{1}{2}$)Tn=3•$\frac{1}{2}$+[($\frac{1}{2}$)2+($\frac{1}{2}$)3+…+($\frac{1}{2}$)n]-(2n+1)•($\frac{1}{2}$)n+1
$\frac{1}{2}$Tn=3•$\frac{1}{2}$+2[$\frac{(\frac{1}{2})^{2}[1-(\frac{1}{2})^{n-1}]}{1-\frac{1}{2}}$]-(2n+1)•($\frac{1}{2}$)n+1,
∴Tn=5-(2n+5)($\frac{1}{2}$)n
數(shù)列{cn}的前n項和${T_n}=5-(2n+5){({\frac{1}{2}})^n}$.

點評 本題考查等差數(shù)列和等比數(shù)列通項公式,考查“錯位相減法”求數(shù)列的前n項和,考查計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.過橢圓$\frac{{y}^{2}}{9}$+x2=1內的一點P($\frac{1}{2}$,$\frac{1}{2}$)的弦,恰好被點P平分,則這條弦所在的直線方程為( 。
A.9x-y-4=0B.x+y+5=0C.2x+y-2=0D.9x+y-5=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若f(x)=-x2+2ax與g(x)=$\frac{a}{x}$在區(qū)間[1,2]上都是減函數(shù),則實數(shù)a的取值范圍是(0,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.圓心為M(-1,0),且過點A(1,2)的圓(x+1)2+y2=8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設兩正數(shù)a,b(a≠b)滿足a2+ab+b2=a+b,則a+b的取值范圍是( 。
A.(1,+∞)B.(1,$\frac{4}{3}$)C.[1,$\frac{4}{3}$]D.(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知直角梯形ABCD中,AB∥CD,∠BCD=60°,E是線段AD上靠近A的三等分點,F(xiàn)是線段DC的中點,若AB=2,AD=$\sqrt{3}$,則$\overrightarrow{EB•}$$\overrightarrow{EF}$=$\frac{7}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知O:x2+y2=1和點$P(-1,\sqrt{3})$,A、B是圓O上兩個動點,則∠APB的最大值為(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.過點P(-1,0)的直線l與拋物線y2=5x相切,則直線l的斜率為( 。
A.±$\frac{\sqrt{2}}{2}$B.±$\frac{\sqrt{3}}{2}$C.±$\frac{\sqrt{5}}{2}$D.±$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.直線3x+4y+5=0與圓x2+y2=4交于M,N兩點,則$\overrightarrow{OM}•\overrightarrow{ON}$(O為坐標原點)等于( 。
A.1B.0C.-1D.-$\frac{28}{25}$

查看答案和解析>>

同步練習冊答案