將一段長為100 cm的鐵絲截成兩段,一段彎成圓,一段彎成正方形,問如何截能使正方形與圓面積之和最小,并求出最小面積.

解析:設(shè)彎成圓的一段長為x,另一段長為100-x,設(shè)正方形與圓的面積之和為S,則S=π()2+()2?(0<x<100),

所以S′=-(100-x),

令S′=0,得x=44 cm.

由于在(0,100)內(nèi)函數(shù)只有一個導(dǎo)數(shù)為0的點,故當(dāng)x=時S最小,此時.

所以截成圓的一段鐵絲長為時,可使正方形與圓的面積之和最小,最小值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將一段長為100 cm的鐵絲截成兩段,一段彎成圓,一段彎成正方形.問如何截能使正方形與圓面積之和最小,并求出最小面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一段長為100 cm的鐵絲截成兩段,一段彎成圓,一段彎成正方形,問如何截能使正方形與圓面積之和最小,并求出最小面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一段長為100 cm的鐵絲截成兩段,一段彎成圓,一段彎成正方形,問如何截法使正方形與圓面積之和最小,并求出最小面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一段長為100 cm的鐵絲截成兩段,一段彎成圓形,一段彎成正方形,問如何截法使正方形與圓面積之和最小,并求出最小面積.

查看答案和解析>>

同步練習(xí)冊答案