10.已知平行于x軸的直線分別交曲線y=e2x+1與y=$\sqrt{2x-1}$于A,B兩點(diǎn),則|AB|的最小值為( 。
A.$\frac{5+ln2}{4}$B.$\frac{5-ln2}{4}$C.$\frac{3+ln2}{4}$D.$\frac{3-ln2}{4}$

分析 設(shè)A(x1,a),B(x2,a),用a表示出x1,x2,求出|AB|,令y=x2-lnx,利用導(dǎo)數(shù)求出單調(diào)區(qū)間和極小值、最小值,即可求出|AB|的最小值.

解答 解:設(shè)A(x1,a),B(x2,a),
則a=e2x1+1=$\sqrt{2{x}_{2}-1}$,
x1=$\frac{1}{2}$(lna-1),x2=$\frac{1}{2}$(a2+1),
可得|AB|=|x2-x1|=$\frac{1}{2}$|a2-lna+2|,
令y=x2-lnx,則y′=2x-$\frac{1}{x}$=$\frac{2(x-\frac{\sqrt{2}}{2})(x+\frac{\sqrt{2}}{2})}{x}$,
函數(shù)在(0,$\frac{\sqrt{2}}{2}$)上單調(diào)遞減,在($\frac{\sqrt{2}}{2}$,+∞)上單調(diào)遞增,
可得x=$\frac{\sqrt{2}}{2}$時(shí),函數(shù)y的最小值為$\frac{1}{2}$(1+ln2),
即有|AB|的最小值為$\frac{5+ln2}{4}$.
故選:A.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用:求單調(diào)區(qū)間和極值、最值,考查化簡(jiǎn)整理的運(yùn)算能力,正確求導(dǎo)確定函數(shù)的最小值是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)實(shí)數(shù)m、n、x、y滿足m2+n2=a,x2+y2=b,其中a、b為正的常數(shù),則mx+ny的最大值是(  )
A.$\frac{a+b}{2}$B.$\sqrt{a•b}$C.$\frac{2ab}{a+b}$D.$\frac{\sqrt{{a}^{2}+^{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.線性方程組$\left\{\begin{array}{l}2x+4y-10=0\\ 3x=8y+2\end{array}\right.$的增廣矩陣是$[\begin{array}{l}{2}&{4}&{10}\\{3}&{-8}&{2}\end{array}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.過(guò)點(diǎn)(3,0)和雙曲線x2-ay2=1(a>0)僅有一交點(diǎn)的直線有( 。
A.1條B.2條C.4條D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若函數(shù)f(x)=xex-a有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.$(-\frac{1}{e},+∞)$B.$(-\frac{1}{e},0)$C.(-e,0)D.(0,e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知定義域?yàn)镽的函數(shù)$f(x)=\frac{{b-{2^x}}}{{{2^x}+a}}$是奇函數(shù).
(1)求a,b的值;
(2)若對(duì)于t∈R,不等式f(2t2-k)+f(t2-2t)<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.通過(guò)4次試驗(yàn)得到變量x,y的數(shù)據(jù)如表,根據(jù)表中數(shù)據(jù)得到回歸直線方程$\hat y$=9.4x+$\hat a$,由此當(dāng)x=6時(shí),y的估計(jì)值為(  )
x2345
y26394954
A.63.6B.65.5C.67.7D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列函數(shù)圖象是關(guān)于y軸對(duì)稱(chēng)的是( 。
A.y=$\frac{{x({x-1})}}{x-1}$B.y=x3-xC.y=-|x+1|D.y=-3x2+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.函數(shù)f(x)=ln(-x+1)的定義域?yàn)椋?∞,1).

查看答案和解析>>

同步練習(xí)冊(cè)答案