【題目】已知圓C: 的圓心為C, ,
(Ⅰ)在中,求邊上的高CD所在的直線方程;
(Ⅱ)求與圓C相切且在兩坐標(biāo)軸上的截距相等的直線方程
【答案】(1)(2)①② 或或
【解析】試題分析:(1)先求出AB的斜率,然后直線AB與CD垂直,斜率之積為-1得出CD的斜率(2)截距相等要考慮兩種情況,當(dāng)截距都為0時和截距不為0時當(dāng)兩截距均為0時,設(shè)直線方程為則圓心到直線的距離為解出k,當(dāng)兩截距均不為0時,設(shè)直線方程為
則圓心到直線的距離為,解出a即可得出方程
試題解析:
解:(Ⅰ)依題意得,圓心為,半徑, ,、
直線的斜率為:
直線的方程為: ,即
(Ⅱ)當(dāng)兩截距均為0時,設(shè)直線方程為
則圓心到直線的距離為,解得,得直線為
當(dāng)兩截距均不為0時,設(shè)直線方程為
則圓心到直線的距離為,解得,得直線為或
綜上所述,直線方程為或或
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,解關(guān)于的不等式;
(2)若關(guān)于的不等式的解集是,求實數(shù)、的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校100名學(xué)生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中a的值;
(2)根據(jù)頻率分布直方圖,估計這100名學(xué)生語文成績的平均分;
(3)若這100名學(xué)生語文成績某些分?jǐn)?shù)段的人數(shù)(x)與數(shù)學(xué)成績相應(yīng)分?jǐn)?shù)段的人數(shù)(y)之比如表所示,求數(shù)學(xué)成績在[50,90)之外的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
以直角坐標(biāo)系的原點為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo),且兩坐標(biāo)系取相同的長度單位.已知點的極坐標(biāo)為,圓的極坐標(biāo)方程為,若為曲線上的動點,且到定點的距離等于圓的半徑.
(1)求曲線的直角坐標(biāo)方程;
(2)若過點的直線的參數(shù)方程為(為參數(shù)),且直線與曲線交于、兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】判斷對錯.
(1)若a>b,則ac>bc一定成立.(______)
(2)若a+c>b+d,則a>b,c>d.(______)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點, ,點滿足,其中, ,且;圓的圓心在軸上,且與點的軌跡相切與點.
(1)求圓的方程;
(2)若點,點是圓上的任意一點,求的取值范圍;
(3)過點的兩條直線分別與圓交于、兩點,若直線、的斜率互為相反數(shù),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題p:關(guān)于x的不等式x2+2ax+4>0對于一切x∈R恒成立,命題q:x∈11,2], x2-a≥0,若p∨q為真,p∧q為假,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com