5.已知2sinθ=1+cosθ,則tanθ=( 。
A.$-\frac{4}{3}$或0B.$\frac{4}{3}$或0C.$-\frac{4}{3}$D.$\frac{4}{3}$

分析 利用同角三角函數(shù)的基本關(guān)系、二倍角的余弦公式,求得tanθ的值.

解答 解:∵2sinθ=1+cosθ,∴4sin$\frac{θ}{2}$cos$\frac{θ}{2}$=2${cos}^{2}\frac{θ}{2}$,∴cos$\frac{θ}{2}$=0 或2sin$\frac{θ}{2}$=cos$\frac{θ}{2}$,
即$\frac{θ}{2}$=kπ+$\frac{π}{2}$,k∈Z,或tan$\frac{θ}{2}$=$\frac{1}{2}$,即θ=2kπ+π,k∈Z,或tanθ=$\frac{2tan\frac{θ}{2}}{1{-tan}^{2}\frac{θ}{2}}$=$\frac{4}{3}$,
即 tanθ=0,或tanθ=$\frac{4}{3}$,
故選:B.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系、二倍角的余弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.“求方程($\frac{5}{13}$)x+($\frac{12}{13}$)x=1的解”,有如下解題思路:設(shè)f(x)=($\frac{5}{13}$)x+($\frac{12}{13}$)x,則f(x)在R上單調(diào)遞減,且f(2)=1,所以原方程有唯一解x=2,類比上述解題思路,不等式x6-(x+2)>(x+2)3-x2的解集是(-∞,-1)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知命題p:$\frac{x+2}{x-3}$≥0,q:x∈Z,若“p且q”與“¬q”同時(shí)為假命題,則x的取值集合為{-1,0,1,2,3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.命題p:“a=2”是q:“直線ax+3y-1=0與直線6x+4y-3=0垂直”成立的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.給出下列四個(gè)命題:
①函數(shù)f(x)=loga(2x-1)-1的圖象過(guò)定點(diǎn)(1,0);
②已知函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x≤0時(shí),f(x)=x(x+1),則f(x)的解析式為f(x)=x2-|x|;
③函數(shù)y=$\frac{1}{|x|-1}$的圖象可由函數(shù)y=$\frac{1}{|x|}$圖象向右平移一個(gè)單位得到;
④函數(shù)y=$\frac{1}{|x|-1}$圖象上的點(diǎn)到(0,1)距離的最小值是$\sqrt{3}$.
其中所有正確命題的序號(hào)是②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.在各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,a2,a4+2,a5成等差數(shù)列,a1=2,則an=2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)函數(shù)f(x)=x2-2ax+2(x∈[-1,1])的最小值為g(a),求g(a)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知向量$\overrightarrow a,\overrightarrow b,\overrightarrow c,\overrightarrow d$及實(shí)數(shù)x,y滿足$|{\overrightarrow a}|=|{\overrightarrow b}|=1,\overrightarrow c=\overrightarrow a+({{x^2}-3})\overrightarrow b$,$\overrightarrow d=-y\overrightarrow a+x\overrightarrow b,\overrightarrow a⊥\vec b,\vec c⊥\vec d$,且$|{\vec c}|≤\sqrt{10}$.
(1)將y表示成x的函數(shù)y=f(x)并求定義域;
(2)$x∈({1,\sqrt{6}})$時(shí),不等式f(x)≥mx-16恒成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知雙曲線C的方程為$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1,其左、右焦點(diǎn)分別是F1、F2,已知點(diǎn)M坐標(biāo)為(2,1),雙曲線C上點(diǎn)P(x0,y0 ) (x0>0,y0>0)滿足$\frac{\overrightarrow{P{F}_{1}}•\overrightarrow{M{F}_{1}}}{P{F}_{1}}$=$\frac{{\overrightarrow{{F_2F}_1}•\overrightarrow{{MF}_1}}}{{{F_2F}_1}}$,則S${\;}_{△PM{F}_{1}}$-S${\;}_{△PM{F}_{2}}$=( 。
A.-1B.1C.2D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案