【題目】如圖,在三棱柱中,側(cè)面是菱形,,是棱的中點(diǎn),,在線段上,且.
(1)證明:面;
(2)若,面面,求二面角的余弦值.
【答案】(1)詳見解析;(2).
【解析】
(1)連接交于點(diǎn),連接,利用三角形相似證明,然后證明面.
(2)過作于,以為原點(diǎn),,,分別為軸,軸,軸的正方向建立空間直角坐標(biāo),
不妨設(shè),求出面的一個(gè)法向量,面的一個(gè)法向量,然后利用空間向量的數(shù)量積求解即可.
解:(1)連接交于點(diǎn),連接.
因?yàn)?/span>,所以,又因?yàn)?/span>,所以,所以,
又面,面,所以面.
(2)過作于,因?yàn)?/span>,所以是線段的中點(diǎn).
因?yàn)槊?/span>面,面面,所以面.連接,
因?yàn)?/span>是等邊三角形,是線段的中點(diǎn),所以.
如圖以為原點(diǎn),,,分別為軸,軸,軸的正方向建立空間直角坐標(biāo),
不妨設(shè),則,,,,,
由,得,的中點(diǎn),,.
設(shè)面的一個(gè)法向量為,則,即,
得方程的一組解為,即.
面的一個(gè)法向量為,則,
所以二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的左、右焦點(diǎn)分別為, ,且離心率為, 為橢圓上任意一點(diǎn),當(dāng)時(shí), 的面積為1.
(1)求橢圓的方程;
(2)已知點(diǎn)是橢圓上異于橢圓頂點(diǎn)的一點(diǎn),延長(zhǎng)直線, 分別與橢圓交于點(diǎn), ,設(shè)直線的斜率為,直線的斜率為,求證: 為定值.
【答案】(1);(2)
【解析】試題分析:(1)設(shè)由題,由此求出,可得橢圓的方程;
(2)設(shè), ,
當(dāng)直線的斜率不存在時(shí),可得;
當(dāng)直線的斜率不存在時(shí),同理可得.
當(dāng)直線、的斜率存在時(shí),,
設(shè)直線的方程為,則由消去通過運(yùn)算可得
,同理可得,由此得到直線的斜率為,
直線的斜率為,進(jìn)而可得.
試題解析:(1)設(shè)由題,
解得,則,
橢圓的方程為.
(2)設(shè), ,
當(dāng)直線的斜率不存在時(shí),設(shè),則,
直線的方程為代入,可得,
, ,則,
直線的斜率為,直線的斜率為,
,
當(dāng)直線的斜率不存在時(shí),同理可得.
當(dāng)直線、的斜率存在時(shí),,
設(shè)直線的方程為,則由消去可得:
,
又,則,代入上述方程可得
,
,則
,
設(shè)直線的方程為,同理可得,
直線的斜率為,
直線的斜率為,
.
所以,直線與的斜率之積為定值,即.
【題型】解答題
【結(jié)束】
21
【題目】已知函數(shù), ,在處的切線方程為.
(1)求, ;
(2)若方程有兩個(gè)實(shí)數(shù)根, ,且,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的短軸長(zhǎng)為,離心率為,直線:與橢圓交于不同的兩點(diǎn),,為橢圓的左頂點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng)的面積為時(shí),求的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線:(為參數(shù))和曲線:(為參數(shù)).
(1)化,的方程為普通方程,并說明它們分別表示什么曲線;
(2)若上的點(diǎn)對(duì)應(yīng)的參數(shù)為,為上的動(dòng)點(diǎn),求中點(diǎn)到直線:(為參數(shù))距離的最小值及此時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(,且),且.
(1)求實(shí)數(shù)的值;
(2)判斷函數(shù)的奇偶性并證明
(3)若函數(shù)有零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列五個(gè)命題不正確的是________.
①若等比數(shù)列的公比,則數(shù)列單調(diào)遞增.
②常數(shù)列既是等差數(shù)列又是等比數(shù)列.
③在中,角ABC所對(duì)的邊分別為a,b,c,若則且.
④在中,若,則為銳角三角形.
⑤等比數(shù)列的前n項(xiàng)和為,對(duì)任意正整數(shù)m,則,,,…仍成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在正三棱柱ABC-A1B1C1中,已知D,E分別為BC,B1C1的中點(diǎn),點(diǎn)F在棱CC1上,且EF⊥C1D.求證:
(1)直線A1E∥平面ADC1;
(2)直線EF⊥平面ADC1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓的方程為,圓的方程為,動(dòng)圓與圓內(nèi)切且與圓外切.
(1)求動(dòng)圓圓心的軌跡的方程;
(2)已知與為平面內(nèi)的兩個(gè)定點(diǎn),過點(diǎn)的直線與軌跡交于,兩點(diǎn),求四邊形面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com