分析 (1)通過余弦定理和正弦定理,進而可知數(shù)列{an}是首項為$\frac{1}{2}$、公比為$\frac{1}{2}$的等比數(shù)列,進而計算可得結(jié)論;
(2)通過(1)可知bn=n•2n,進而利用錯位相減法計算即得結(jié)論.
解答 解:(1)∵a2+b2=c2+ab,
∴cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{1}{2}$,
又C為三角形的內(nèi)角,
∴C=$\frac{π}{3}$,
∵$\frac{sinA}{a}$=$\frac{sinC}{c}$=$\frac{1}{2}$,
∴q=$\frac{1}{2}$,
∵首項a1=$\frac{1}{2}$,
∴an=$\frac{1}{{2}^{n}}$;
(2)bn=-$\frac{lo{g}_{2}{a}_{n}}{{a}_{n}}$=n•2n,
∴Sn=1×2+2×22+3×23+…+n•2n,
∴2Sn=1×22+2×23+3×24+…+(n-1)•2n+n•2n+1,
∴-Sn=2+22+23+24+…+•2n-n•2n+1,
整理得Sn=(n-1)2n+1+2,
∴Sn=(n-1)2n+1+2.
點評 本題考查數(shù)列的通項及前n項和,考查錯位相減法,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{13}{6}$ | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 60° | B. | 90° | C. | 105° | D. | 75° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com