【題目】已知定義在R上的函數(shù)f(x),滿足 ,且f(3)=f(1)﹣1.
(1)求實(shí)數(shù)k的值;
(2)若函數(shù)g(x)=f(x)+f(﹣x)(﹣2≤x≤2),求g(x)的值域.
【答案】
(1)解:由題意可得f(1)﹣1=1+2﹣1=2,
f(3)=f(﹣1+4)=f(﹣1)=2,
所以可得
(2)解:由 得:
,
∴ ,
當(dāng)0<x<2時(shí),1<x+1<3,
所以
在(x+1)2=4即x=1處取得最小值,
所以g(x)在(0,1)處單調(diào)遞減,
在[1,2)上單調(diào)遞增,
,
當(dāng)x→2時(shí), ,
所以g(x)在(0,2)上的值域?yàn)閇5,6).
當(dāng)﹣2<x<0時(shí),1<1﹣x<3,
∴ ;
當(dāng)(1﹣x)2=4,即x=﹣1時(shí)取得最小值;
當(dāng)x→﹣2時(shí), ;
當(dāng)x→0時(shí), ,
∴g(x)在(﹣2,0)上的值域?yàn)閇5,6).
綜上所述,g(x)的值域?yàn)?
【解析】(1)由已知中函數(shù)f(x),滿足 ,且f(3)=f(1)﹣1,構(gòu)造方程,解得實(shí)數(shù)k的值;(2)函數(shù) ,分類討論各段上函數(shù)值的范圍,可得答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式,并寫出f(x)的單調(diào)減區(qū)間;
(2)△ABC的內(nèi)角分別是A,B,C,若f(A)=1,cosB= ,求sinC的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),若方程f(x+1)=|x2+2x﹣3|的實(shí)根分別為x1 , x2 , …,xn , 則x1+x2+…+xn=( )
A.n
B.﹣n
C.﹣2n
D.﹣3n
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且 ,數(shù)列{bn}滿足 ,則數(shù)列{anbn}的前n項(xiàng)和Tn= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為 .
(1)求曲線C1 , C2的直角坐標(biāo)方程;
(2)已知點(diǎn)P,Q分別是線C1 , C2的動(dòng)點(diǎn),求|PQ|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)面PAD⊥底面ABCD,且PA=PD=AD,E,F分別為PC,BD的中點(diǎn).
求證:(1)EF∥平面PAD;
(2)PA⊥平面PDC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】動(dòng)直線2ax+(a+c)y+2c=0(a∈R,c∈R)過定點(diǎn)(m,n),x1+x2+m+n=15 且x1>x2 , 則 的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖像在處的切線與直線平行.
(1)求函數(shù)的極值;
(2)若,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com