【題目】如圖,三棱柱中,⊥面,

,DAC的中點.

(Ⅰ)求證:面BD;

(Ⅱ)求二面角的余弦值;

【答案】見解析

【解析】

(Ⅰ)連接B1C,與BC1相交于O,連接OD.根據(jù)三角形的中位線定理判定線面平行。

(Ⅱ)建立空間直角坐標系,求得面BDC1的一個法向量和面ABC的一個法向量,利用法向量求面面夾角,并判斷二面角的大小。

(I)證明:連接B1C,與BC1相交于O,連接OD

BCC1B1是矩形,∴OB1C的中點.

DAC的中點,∴OD//AB1 AB1BDC1,ODBDC1,∴AB1//BDC1

II)解:如圖,建立空間直角坐標系,

C10,0,0),B0,32),

C0,3,0),A2,3,0D13,0),

,

設(shè)是面BDC1的一個法向量,則

,取.

易知是面ABC的一個法向量.

. ∴二面角C1—BD—C的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的方程為,求過的圓的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位決定投資3200元建一倉庫(長方體狀),高度恒定,它的后墻利用舊墻不花錢,正面用鐵柵,每米長造價40元,兩側(cè)墻砌磚,每米長造價45元,頂部每平方米造價20元。

(1)設(shè)鐵柵長為米,一堵磚墻長為米,求函數(shù)的解析式;

(2)為使倉庫總面積達到最大,正面鐵柵應(yīng)設(shè)計為多長?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合M={x|9x﹣43x+1+27=0},N={x|log2(x+1)+log2x=log26},則M、N的關(guān)系是(
A.MN
B.NM
C.M=N
D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= 其中P,M是非空數(shù)集,且P∩M=,設(shè)f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}.
(I)若P=(﹣∞,0),M=[0,4],求f(P)∪f(M);
(II)是否存在實數(shù)a>﹣3,使得P∪M=[﹣3,a],且f(P)∪f(M)=[﹣3,2a﹣3]?若存在,請求出滿足條件的實數(shù)a;若不存在,請說明理由;
(III)若P∪M=R,且0∈M,I∈P,f(x)是單調(diào)遞增函數(shù),求集合P,M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( ).

A. ,“”是“”的必要不充分條件

B. 為真命題”是“為真命題” 的必要不充分條件

C. 命題“,使得”的否定是:“

D. 命題:“”,則是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校100名學(xué)生期中考試數(shù)學(xué)成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間如下:

組號

第一組

第二組

第三組

第四組

第五組

分組

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

(1)求圖中a的值;

(2)根據(jù)頻率分布直方圖,估計這100名學(xué)生期中考試數(shù)學(xué)成績的平均分;

(3)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機抽取6名學(xué)生,將該樣本看成一個總體,從中隨機抽取2,求其中恰有1人的分數(shù)不低于90分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列是遞增數(shù)列,且對,都有,則實數(shù)的取值范圍是

A. B. C. D.

【答案】D

【解析】

{an}是遞增數(shù)列,得到an+1>an,再由“an=n2+λn恒成立轉(zhuǎn)化為“λ>﹣2n﹣1對于nN*恒成立求解.

∵{an}是遞增數(shù)列,

∴an+1>an

∵an=n2+λn恒成立

即(n+1)2+λ(n+1)>n2+λn,

∴λ>﹣2n﹣1對于nN*恒成立.

而﹣2n﹣1n=1時取得最大值﹣3,

∴λ>﹣3,

故選:D.

【點睛】

本題主要考查由數(shù)列的單調(diào)性來構(gòu)造不等式,解決恒成立問題.研究數(shù)列單調(diào)性的方法有:比較相鄰兩項間的關(guān)系,將an+1an做差與0比較,即可得到數(shù)列的單調(diào)性;研究數(shù)列通項即數(shù)列表達式的單調(diào)性.

型】單選題
結(jié)束】
13

【題目】已知數(shù)列{an}滿足a1=1,且anan1+2n1 (n≥2 ),則a20________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)f(x),滿足 ,且f(3)=f(1)﹣1.
(1)求實數(shù)k的值;
(2)若函數(shù)g(x)=f(x)+f(﹣x)(﹣2≤x≤2),求g(x)的值域.

查看答案和解析>>

同步練習(xí)冊答案