【題目】某校100名學(xué)生期中考試數(shù)學(xué)成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間如下:
組號 | 第一組 | 第二組 | 第三組 | 第四組 | 第五組 |
分組 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
(1)求圖中a的值;
(2)根據(jù)頻率分布直方圖,估計這100名學(xué)生期中考試數(shù)學(xué)成績的平均分;
(3)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機抽取6名學(xué)生,將該樣本看成一個總體,從中隨機抽取2名,求其中恰有1人的分?jǐn)?shù)不低于90分的概率.
【答案】(1) a=0.005;(2) 74.5;(3)見解析.
【解析】試題分析:(1)根據(jù)頻率分布直方圖性質(zhì),每個小長方形面積等于該組的頻率,所有小長方形面積和等于,所以,可以求出;(2)本問考查由頻率分布直方圖估算樣本數(shù)據(jù)的平均數(shù),用每組的頻率乘以該組數(shù)據(jù)中點橫坐標(biāo)的值,再相加即可;(3)根據(jù)頻率分布直方圖可知,第三、四、五組的頻率之比為,根據(jù)分層抽樣性質(zhì),第三、四、五組抽取人數(shù)一次為人,人,人,從人隨機抽取人,共有種不同的抽取方法,再求出恰有人不低于分的事件個數(shù),就可以求出相應(yīng)的概率.
試題解析:(1)由題意得,所以;
(2)由直方圖分?jǐn)?shù)在的頻率為0.05,的頻率為0.35,的頻率為0.30,的頻率為0.20,的頻率為0.10,所以這100名學(xué)生期中考試數(shù)學(xué)成績的平均分的估計值為:
;
(3)由直方圖,得:第3組人數(shù)為:人,
第4組人數(shù)為:人,
第5組人數(shù)為:人,
所以利用分層抽樣在60名學(xué)生中抽取6名學(xué)生,
每組分別為:第3組:人,
第4組:人,
第5組:人,
所以第3、4、5組分別抽取3人、2人、1人.
設(shè)第3組的3位同學(xué)為,第4組的2位同學(xué)為,第5組的1位同學(xué)為,則從六位同學(xué)中抽兩位同學(xué)有15種可能如下:
,
,
其中恰有1人的分?jǐn)?shù)不低于90分的情形有:,共5種,所以其中第4組的2位同學(xué)至少有一位同學(xué)入選的概率為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|,其中a>1
(1)當(dāng)a=2時,求不等式f(x)≥4﹣|x﹣4|的解集;
(2)已知關(guān)于x的不等式|f(2x+a)﹣2f(x)|≤2的解集{x|1≤x≤2},求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】傳承傳統(tǒng)文化再掀熱潮,我校舉行傳統(tǒng)文化知識競賽.其中兩位選手在個人追逐賽中的比賽得分如莖葉圖所示,則下列說法正確的是( )
A. 甲的平均數(shù)大于乙的平均數(shù)
B. 甲的中位數(shù)大于乙的中位數(shù)
C. 甲的方差大于乙的方差
D. 甲的平均數(shù)等于乙的中位數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為 (α為參數(shù)),曲線C2的參數(shù)方程為 (β為參數(shù)),以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C1和曲線C2的極坐標(biāo)方程;
(2)已知射線l1:θ=α( <α< ),將射線l1順時針方向旋轉(zhuǎn) 得到l2:θ=α﹣ ,且射線l1與曲線C1交于兩點,射線l2與曲線C2交于O,Q兩點,求|OP||OQ|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在最強大腦的舞臺上,為了與國際X戰(zhàn)隊PK,假設(shè)某季Dr.魏要從三名擅長速算的選手A1,A2,A3,三名擅長數(shù)獨的選手B1,B2,B3,兩名擅長魔方的選手C1,C2中各選一名組成中國戰(zhàn)隊.假定兩名魔方選手中更擅長盲擰的選手C1已確定入選,而擅長速算與數(shù)獨的選手入選的可能性相等.
(Ⅰ)求A1被選中的概率;
(Ⅱ)求A1,B1不全被選中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次考試中,從甲乙兩個班各抽取10名學(xué)生的數(shù)學(xué)成績進(jìn)行統(tǒng)計分析,兩個班成績的莖葉圖如圖所示.
(Ⅰ)求甲班的平均分;
(Ⅱ)從甲班和乙班成績90100的學(xué)生中抽取兩人,求至少含有甲班一名同學(xué)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}為等比數(shù)列, 公比為 為數(shù)列{an}的前n項和.
(1)若求;
(2)若調(diào)換的順序后能構(gòu)成一個等差數(shù)列,求的所有可能值;
(3)是否存在正常數(shù),使得對任意正整數(shù)n,不等式總成立?若存在,求出的范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如表資料:
日 期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
晝夜溫差x(°C) | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù)y(個) | 22 | 25 | 29 | 26 | 16 | 12 |
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;
(2)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問(2)中所得線性回歸方程是否理想?
參考公式:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:曲線C:(m+2)x2+my2=1表示雙曲線,命題q:方程y2=(m2﹣1)x表示的曲線是焦點在x軸的負(fù)半軸上的拋物線,若p∨q為真命題,p∧q為假命題,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com