【題目】已知不等式|y4||y|2x對任意實(shí)數(shù)xy都成立,則常數(shù)a的最小值為(  )

A. 1 B. 2 C. 3 D. 4

【答案】D

【解析】 ∵|y+4|-|y|≤|y+4-y|=4,

∴(|y+4|-|y|)max=4,要使不等式對任意實(shí)數(shù)xy都成立,應(yīng)有2x≥4,

a≥-(2x)2+4×2x=-(2x-2)2+4,

f(x)=-(2x-2)2+4,則af(x)max=4,∴a的最小值為4,故選D.

點(diǎn)晴:解決不等式恒成立的問題常用的方法是根據(jù)參變量分離,把含參數(shù)的不等式恒成立問題 通過變量分離轉(zhuǎn)化為不含參數(shù)的函數(shù)的最值問題;本題中先利用絕對值三角不等式求得|y4||y|最值,再通過分離轉(zhuǎn)化為求二次函數(shù)f(x)=-(2x)2+4×2x最值,進(jìn)而求得a的最小值為4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2018屆高三·湖南十校聯(lián)考)已知函數(shù)f(x)=x+sin x(x∈R),且f(y2-2y+3)+f(x2-4x+1)≤0,則當(dāng)y≥1時(shí), 的取值范圍是(  )

A. B.

C. [1,3-3] D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系.曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為為參數(shù))

(1)求曲線的直角坐標(biāo)方程及曲線的極坐標(biāo)方程;

(2)當(dāng))時(shí)在曲線上對應(yīng)的點(diǎn)為,若的面積為,求點(diǎn)的極坐標(biāo),并判斷是否在曲線上(其中點(diǎn)為半圓的圓心)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列的首項(xiàng)為,公差為,等比數(shù)列的首項(xiàng)為,公比為.

若數(shù)列的前項(xiàng)和,求, 的值

, ,且.

i的值;

ii對于數(shù)列,滿足關(guān)系式, 為常數(shù),且,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018河南安陽市高三一模如下圖在平面直角坐標(biāo)系,直線與直線之間的陰影部分即為,區(qū)域中動點(diǎn)的距離之積為1

)求點(diǎn)的軌跡的方程;

)動直線穿過區(qū)域,分別交直線兩點(diǎn)若直線與軌跡有且只有一個(gè)公共點(diǎn),求證 的面積恒為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x),且對任意x>0,都有f′(x)>.

(1)判斷函數(shù)F(x)=在(0,+∞)上的單調(diào)性;

(2)設(shè)x1,x2∈(0,+∞),證明:f(x1)+f(x2)<f(x1x2);

(3)請將(2)中結(jié)論推廣到一般形式,并證明你所推廣的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,射線OA、OB分別與x軸正半軸成45°30°角,過點(diǎn)P(1,0)作直線AB分別交OA、OBA、B兩點(diǎn),當(dāng)AB的中點(diǎn)C恰好落在直線yx上時(shí),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是由個(gè)實(shí)數(shù)組成的列的數(shù)表,滿足:每個(gè)數(shù)的絕對值不大于,且所有數(shù)的和為零,記為所有這樣的數(shù)表組成的集合,對于,記的第行各數(shù)之和( ),的第列各數(shù)之和(),記, , , , , , , 中的最小值.

)對如下數(shù)表,求的值.

)設(shè)數(shù)表形如:

的最大值.

)給定正整數(shù),對于所有的,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中, 平面, .過的平面交于點(diǎn),交于點(diǎn).

(l)求證: 平面;

(Ⅱ)求證: ;

(Ⅲ)記四棱錐的體積為,三棱柱的體積為.若,求的值.

查看答案和解析>>

同步練習(xí)冊答案