若x∈A,
1
x
∈A,則稱A是“伙伴關系集合”,在集合M={-1, 0, 
1
3
, 
1
2
,1, 2, 3, 4}
的所有非空子集任選一個集合,則該集合是“伙伴關系集合”的概率為( 。
A、
1
51
B、
1
17
C、
7
255
D、
4
255
考點:列舉法計算基本事件數(shù)及事件發(fā)生的概率
專題:概率與統(tǒng)計
分析:根據(jù)題意分析可得:M中具有伙伴關系的元素即互為倒數(shù)的元素的有(-1),(1),(
1
2
、2),(
1
3
、3)共四組,它們中任一組、二組、三組、四組均可組成非空伙伴關系集合,由組合數(shù)公式,可得“伙伴關系集合”個數(shù),進而有M中元素的個數(shù),可得其非空子集的個數(shù),由古典概型的公式,計算可得答案.
解答: 解:分析可得:M中具有伙伴關系的元素組有(-1),(1),(
1
2
、2),(
1
3
、3)共四組,
它們中任一組、二組、三組、四組均可組成非空伙伴關系集合,
即“伙伴關系集合”個數(shù)為C41+C42+C43+C44=15;
而M中共8個元素,共有28-1=255個子集;
故其概率為
15
255
=
1
17

故選:B.
點評:本題是新定義的題型,解題的關鍵在于分析題意,得到具有伙伴關系的元素即互為倒數(shù)的元素,進而可得“伙伴關系集合”個數(shù).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若函數(shù)y1=a•x2,y2=c•2x,y3=b•x3,則由表中數(shù)據(jù)確定f(x),g(x),h(x)依次對應(  )
xf(x)g(x)h(x)
120.20.2
550253.2
10200200102.4
A、y1,y2,y3
B、y2,y1,y3
C、y3,y2,y1
D、y1,y3,y2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,若(2a-c)cosB=bcosC.
(Ⅰ)求角B的大;
(Ⅱ)若a=3,△ABC的面積為
3
3
2
,求
BA
AC
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在正方體ABCD-A1B1C1D1中,E、F、G、H分別是棱CC1、C1D1、D1D、CD的中點,N是BC的中點,點M在四邊形EFGH及其內(nèi)部運動,則M滿足
 
時,有MN∥平面B1BDD1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(2,1),B(3,-2),點P是直線l:2x+y-1=0上的動點,則|PA|2+|PB|2的最小值為(  )
A、
91
10
B、
93
10
C、
97
10
D、
99
10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α,β是兩個不同的平面,下列條件中可以推出α∥β 是( 。
A、存在一條直線a,a∥α,a⊥β
B、存在一個平面γ,γ⊥α,γ⊥β
C、存在兩條平行直線a,b,a?α,b?β,a∥β,b∥α;
D、存在兩條異面直線a,b,a?α,b?β,a∥β,b∥α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線C的兩個焦點分別是F1(0,-
6
),F(xiàn)2(0,
6
),且過點M(2,2).
(1)求雙曲線C的方程;
(2)若雙曲線C上的點P滿足PF1⊥PF2,求點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

黃種人群中各種血型的人所占的比例如下表所示:
血型ABABO
該血型的人所占的比例(%)28%29%8%35%
若按如下原則輸血,同種血型的人可以輸血,O型血可以輸給任何一種血型的人,任何血型的人血都可以輸給AB型血的人,其他不同血型的人不能互相輸血,問:
(1)任找一個人,其血可以輸給B型血病人的概率是多少?
(2)任找一個人,其血可以輸給A型血病人或B型血病人的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某人根據(jù)自己愛好,希望從{W,X,Y,Z}中選2個不同字母,從{0,2,6,8}中選3個不同數(shù)字擬編車牌號,要求前三位是數(shù)字,后兩位是字母,且數(shù)字2不能排在首位,字母Z和數(shù)字2不能相鄰,那么滿足要求的車牌號有( 。
A、198個B、180個
C、216個D、234個

查看答案和解析>>

同步練習冊答案