10.對(duì)于定義在[0,+∞)上的函數(shù)f(x),如果同時(shí)滿足下列三條:
①對(duì)任意的x∈[0,+∞),總有f(x)≥0;
②若x1≥0,x2≥0,都有f(x1+x2)≥f(x1)+f(x2)成立;
③若0≤x1<x2<1,則$\frac{{f({x_1}+1)-f({x_2}+1)}}{{{x_1}-{x_2}}}$>1.
則稱函數(shù)f(x)為超級(jí)囧函數(shù),則下列是超級(jí)囧函數(shù)的為(3).
(1)f(x)=sinx
(2)g(x)=$\frac{1}{4}{x^2}$(x∈[0,1])
(3)h(x)=2x-1;
(4)p(x)=ln(x+1)

分析 根據(jù)超級(jí)囧函數(shù)的定義,分別判斷函數(shù)是否滿足條件即可得到結(jié)論.

解答 解:對(duì)于(1)不滿足①對(duì)任意的x∈[0,+∞),總有f(x)≥0,故(1)不是超級(jí)囧函數(shù);
對(duì)于(2),g(x)=$\frac{1}{4}{x^2}$(x∈[0,1]),則g(x1+x2),g(x+1)可能沒意義,故故(2)不是超級(jí)囧函數(shù);
對(duì)于(3),函數(shù)h(x)=2x-1(x∈[0,+∞)上滿足h(x)≥0,
若x1≥0,x2≥0,x1+x2≤1,則h(x1+x2)-[h(x1)+h(x2)]=2x1+x2-1-[(2x1-1)+(2x2-1)
=2x1+x2-2x1-2x2+1)=(2x1-1)(2x2-1)≥0,
即h(x1+x2)≥h(x1)+h(x2),
要滿足0≤x1<x2<1,則$\frac{{f({x_1}+1)-f({x_2}+1)}}{{{x_1}-{x_2}}}$>1,只需f(x1+1)-f(x2-1)<(x1+1)-(x2+1),即函數(shù)G(t)=f(t)-t在[1,2)上遞增即可.函數(shù)h(x)=2x-1顯然滿足,故(3)是超級(jí)囧函數(shù);
對(duì)于(4),x1≥0,x2≥0時(shí),p(x1+x2)-[p(x1)+p(x2)]=ln$\frac{{x}_{1}+{x}_{2}+1}{{(x}_{1}+1)({x}_{2}+1)}$=ln$\frac{{x}_{1}+{x}_{2}+1}{{x}_{1}+{x}_{2}+{x}_{1}{x}_{2}+1}$≤0,故不滿足②若x1≥0,x2≥0,都有f(x1+x2)≥f(x1)+f(x2)成立,故(4)不是超級(jí)囧函數(shù);
故答案為:(3)

點(diǎn)評(píng) 本題主要考查抽象函數(shù)的應(yīng)用,根據(jù)函數(shù)的定義分別判斷條件已經(jīng)利用賦值法是解決抽象函數(shù)的基本方法.屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合A={x|y=lg(3-2x)},B={x|x2≤4},則A∪B=( 。
A.$\{\left.x\right|-2≤x<\frac{3}{2}\}$B.{x|x<2}C.$\{\left.x\right|-2<x<\frac{3}{2}\}$D.{x|x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.${∫}_{0}^{x}$(a0+a1x+a2x2+…+anxn)dx=x(x+1)n,則a1+a2+…+an=(n+2)2n-1-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若等比數(shù)列{an}的公比為q,則關(guān)于x,y的二元一次方程組$\left\{\begin{array}{l}{a_1}x+{a_3}y=2\\{a_2}x+{a_4}y=1\end{array}\right.$的解的情況下列說法正確的是( 。
A.對(duì)任意q∈R(q≠0),方程組都有唯一解
B.對(duì)任意q∈R(q≠0),方程組都無(wú)解
C.當(dāng)且僅當(dāng)$q=\frac{1}{2}$時(shí),方程組有無(wú)窮多解
D.當(dāng)且僅當(dāng)$q=\frac{1}{2}$時(shí),方程組無(wú)解

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知i為虛數(shù)單位,z+zi=1+5i,則z=( 。
A.2+3iB.2-3iC.3-2iD.3+2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=ex(x+1),給出下列命題:
①當(dāng)x>0時(shí),f(x)=e-x(x-1);
②函數(shù)f(x)有兩個(gè)零點(diǎn);
③f(x)<0的解集為(-∞,-1)∪(0,1);
④?x1,x2∈R,都有|f(x1)-f(x2)|<2.
其中正確的命題為①③④ (把所有正確命題的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\sqrt{3}$sinωxcosωx-cos2ωx+$\frac{1}{2}$(ω>0),與f(x)圖象的對(duì)稱軸x=$\frac{π}{3}$相鄰的f(x)的零點(diǎn)為x=$\frac{π}{12}$.
(Ⅰ)討論函數(shù)f(x)在區(qū)間$[{-\frac{π}{12},\frac{5π}{12}}]$上的單調(diào)性;
(Ⅱ)設(shè)△ABC的內(nèi)角A,B,C的對(duì)應(yīng)邊分別為a,b,c,且c=$\sqrt{3}$,f(C)=1,若向量$\overrightarrow m$=(1,sinA)與向量$\overrightarrow n$=(2,sinB)共線,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在三棱錐A-BCD中,∠ABC=∠BCD=∠CDA=90°,AC=6$\sqrt{3}$,BC=CD=6,E點(diǎn)在平面BCD內(nèi),EC=BD,EC⊥BD.    
(I)求證:AE⊥平面BCDE;
(Ⅱ)設(shè)點(diǎn)G在棱AC上,且CG=2GA,試求三棱錐G-BCE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)集合A={x1,x2,x3,x4},xi∈{-1,0,1},i={1,2,3,4},那么集合A中滿足條件“x12+x22+x32+x42≤3”的元素個(gè)數(shù)為( 。
A.60B.65C.80D.81

查看答案和解析>>

同步練習(xí)冊(cè)答案