【題目】定義域?yàn)?/span>的偶函數(shù)滿(mǎn)足對(duì),有,且當(dāng)時(shí), ,若函數(shù)在上至多有三個(gè)零點(diǎn),則的取值范圍是
__________.
【答案】
【解析】
∵f(x+2)=f(x)﹣f(1),
且f(x)是定義域?yàn)?/span>R的偶函數(shù),
令x=﹣1可得f(﹣1+2)=f(﹣1)﹣f(1),
又f(﹣1)=f(1),
∴f(1)=0 則有f(x+2)=f(x),
∴f(x)是最小正周期為2的偶函數(shù).
當(dāng)x∈[2,3]時(shí),f(x)=﹣2x2+12x﹣18=﹣2(x﹣3)2,
函數(shù)的圖象為開(kāi)口向下、頂點(diǎn)為(3,0)的拋物線.
∵函數(shù)y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三個(gè)零點(diǎn),
令g(x)=loga(|x|+1),則f(x)的圖象和g(x)的圖象至多有3個(gè)交點(diǎn).
可以分兩種情況:其一是有交點(diǎn)時(shí),其二是一個(gè)交點(diǎn)也沒(méi)有,
當(dāng)一個(gè)交點(diǎn)都沒(méi)有時(shí),即a>1.
當(dāng)有交點(diǎn)時(shí),∵f(x)≤0,∴g(x)≤0,可得0<a<1,
要使函數(shù)y=f(x)﹣loga(|x|+1)在(0,+∞)上至多有三個(gè)零點(diǎn),
則有g(4)<f(4),可得 loga(4+1)>f(4)=﹣2,
即loga5<﹣2,∴5>,解得,又0<a<1,∴<a<1,
故答案為: 。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為自然對(duì)數(shù)的底數(shù), ).
(1)設(shè)為的導(dǎo)函數(shù),證明:當(dāng)時(shí), 的最小值小于0;
(2)若恒成立,求符合條件的最小整數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋中有大小相同的3個(gè)紅球和2個(gè)白球,現(xiàn)從袋中每次取出一個(gè)球,若取出的是紅球,則放回袋中,繼續(xù)取一個(gè)球,若取出的是白球,則不放回,再?gòu)拇腥∫磺?/span>,直到取出兩個(gè)白球或者取球5次,則停止取球,設(shè)取球次數(shù)為,
(1)求取球3次則停止取球的概率;
(2)求隨機(jī)變量的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓:()與直線:相切,設(shè)點(diǎn)為圓上一動(dòng)點(diǎn),軸于,且動(dòng)點(diǎn)滿(mǎn)足,設(shè)動(dòng)點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)直線與直線垂直且與曲線交于,兩點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在對(duì)人們休閑方式的一次調(diào)查中,共調(diào)查120人,其中女性70人,男性50人.女性中有40人主要的休閑方式是看電視,另外30人主要的休閑方式是運(yùn)動(dòng);男性中有20人主要的休閑方式是看電視,另外30人主要的休閑方式是運(yùn)動(dòng).
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)2×的列聯(lián)表:
休閑方式 性別 | 看電視 | 運(yùn) 動(dòng) | 總 計(jì) |
女 性 | |||
男 性 | |||
總 計(jì) |
(2)有多大的把握認(rèn)為休閑方式與性別有關(guān)?
參考公式及數(shù)據(jù):K2=
①當(dāng)K2>2.706時(shí),有90%的把握認(rèn)為A、B有關(guān)聯(lián);
②當(dāng)K2>3.841時(shí),有95%的把握認(rèn)為A、B有關(guān)聯(lián);
③當(dāng)K2>6.635時(shí),有99%的把握認(rèn)為A、B有關(guān)聯(lián).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校高三年級(jí)共有1000名學(xué)生,其中男生650人,女生350人,為了調(diào)查學(xué)生周末的休閑方式,用分層抽樣的方法抽查了200名學(xué)生.
(Ⅰ)完成下面的列聯(lián)表;
不喜歡運(yùn)動(dòng) | 喜歡運(yùn)動(dòng) | 合計(jì) | |
女生 | 50 | ||
男生 | |||
合計(jì) | 100 | 200 |
(Ⅱ)在抽取的樣本中,調(diào)查喜歡運(yùn)動(dòng)女生的運(yùn)動(dòng)時(shí)間,發(fā)現(xiàn)她們的運(yùn)動(dòng)時(shí)間介于30分鐘到90分鐘之間,右圖是測(cè)量結(jié)果的頻率分布直方圖,若從區(qū)間段和的所有女生中隨機(jī)抽取兩名女生,求她們的運(yùn)動(dòng)時(shí)間在同一區(qū)間段的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用C(A)表示非空集合A中的元素個(gè)數(shù),定義A*B=若A={1,2},B={x|(x2+ax)·(x2+ax+2)=0},且A*B=1,設(shè)實(shí)數(shù)a的所有可能取值組成的集合是S,則C(S)等于( )
A. 1 B. 3
C. 5 D. 7
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是 (為參數(shù)).
(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若直線與曲線相交于兩點(diǎn),且,求直線的傾斜角的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某購(gòu)物網(wǎng)站對(duì)在7座城市的線下體驗(yàn)店的廣告費(fèi)指出(萬(wàn)元)和銷(xiāo)售額(萬(wàn)元)的數(shù)據(jù)統(tǒng)計(jì)如下表:
城市 | |||||||
廣告費(fèi)支出 | |||||||
銷(xiāo)售額 |
(Ⅰ)若用線性回歸模型擬合與關(guān)系,求關(guān)于的線性回歸方程;
(Ⅱ)若用對(duì)數(shù)函數(shù)回歸模型擬合與的關(guān)系,可得回歸方程,經(jīng)計(jì)算對(duì)數(shù)函數(shù)回歸模型的相關(guān)系數(shù)約為,請(qǐng)說(shuō)明選擇哪個(gè)回歸模型更合適,并用此模型預(yù)測(cè)城市的廣告費(fèi)用支出萬(wàn)元時(shí)的銷(xiāo)售額.
參考數(shù)據(jù): , , , , , .
參考公式: , .
相關(guān)系數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com