在平行四邊形ABCD中 向量
AB
=
a
,
BD
=
b
,試用向量
a
,
b
表示向量
BC
AC
考點(diǎn):向量的減法及其幾何意義
專題:平面向量及應(yīng)用
分析:由向量的三角形法則可得
AD
,即
BC
,再由平行四邊形法則可得
AC
=
AB
+
AD
,代值計算即可.
解答: 解:如圖,
BC
=
AD
=
AB
+
BD
=
a
+
b
,
由平行四邊形法則可得
AC
=
AB
+
AD

=
a
+(
a
+
b
)=2
a
+
b

點(diǎn)評:本題考查向量的加減運(yùn)算,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若P(A)+P(B)=1,則事件A與B的關(guān)系是( 。
A、A與B是互斥事件
B、A與B是對立事件
C、A與B不是互斥事件
D、以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率e=2,點(diǎn)A與點(diǎn)F分別是雙曲線的左頂點(diǎn)和右焦點(diǎn),B(0,b),則sin∠ABF等于(  )
A、
7
14
B、
3
21
14
C、-
7
14
D、-
3
21
14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直三棱柱ABC-A1B1C1的所有頂點(diǎn)都在半徑為
2
的球面上,AB=AC=
3
,AA1=2,則二面角B-AA1-C的余弦值為( 。
A、-
1
3
B、-
1
2
C、
1
3
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的首項為a,公差為d,且不等式ax2-3x+2<0的解集為(1,d).
(Ⅰ)求數(shù)列{an}的通項公式an
(Ⅱ)若bn=3an+an,求數(shù)列{bn}前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文)在等比數(shù)列{an}中,a1>0,n∈N*,且a5-a4=8,又a2、a8的等比中項為16.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=log4an,數(shù)列{bn}的前n項和為Sn,求和
1
S2
+
1
S3
+…+
1
Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域為R,且對任意x、y∈R滿足f(x+y)=f(x)+f(y),當(dāng)x>0時,f(x)<0.
(1)請找出一個滿足條件的函數(shù)f(x);
(2)猜想函數(shù)f(x)的奇偶性和單調(diào)性,并證明你的結(jié)論;
(3)若f(1)=-3,求f(x)在[-2,2]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=m(m-1)+(m-1)i.
(1)實數(shù)m為何值時,復(fù)數(shù)z為純虛數(shù)?
(2)若m=2,計算復(fù)數(shù)
z
1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=
1
x2
-x-20的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊答案