求函數(shù)f(x)=
1
x2
-x-20的單調(diào)性.
考點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的正負(fù)性來求函數(shù)的單調(diào)區(qū)間.
解答: 解:定義域為(-∞,0)∪(0,+∞),
f′(x)=-
2
x3
-1
=-
x3+2
x3
>0,得-
32
<x<0
,
由-
2
x3
-1
=-
x3+2
x3
<0,得x<-
32
或x>0,
∴f(x)的單調(diào)增區(qū)間為:(-
32
,0)
單調(diào)減區(qū)間為:(-∞,-
32
)和(0,+∞).
點評:本題是考查函數(shù)的單調(diào)性,是導(dǎo)數(shù)的簡單應(yīng)用.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平行四邊形ABCD中 向量
AB
=
a
,
BD
=
b
,試用向量
a
,
b
表示向量
BC
AC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,a1=1,an=
Sn
n
+2(n-1)
(n∈N+).
(1)求證:數(shù)列{an}為等差數(shù)列,并分別寫出an和Sn關(guān)于n的表達式;
(2)設(shè)數(shù)列{
1
anan+1
}的前n項和為Tn,證明:
1
5
≤Tn
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知0<β<
π
4
<α<
π
2
,cos(2α-β)=-
11
14
,sin(α-2β)=
4
3
7
,求sin
α+β
2
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在(0,+∞)上的函數(shù)f(x)滿足下面三個條件:①f(2)=0;②對于任意正實數(shù)a,b都有f(ab)=f(a)+f(b)-1;③當(dāng)x>1時,總有f(x)<1.
(1)求f(1)及f(
1
2
)的值;
(2)求證f(x)在(0,+∞)上是減函數(shù).
(3)求不等式f(x-1)+f(x-2)<1的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在△ABC中,
BC
=
2
BD
,AD⊥AB,|
AD
|=1,求
AC
AD
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn=an+1-2n+1+1,n∈N*,且a1=1
(1)證明數(shù)列{
an
2n
}是等差數(shù)列;
(2)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系x0y中,直線
x=a-t
y=t
(t為參數(shù))與圓
x=1+cosθ
y=sinθ
(θ為參數(shù))相切,切點在第一象限,則實數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=
4+3i
(1-2i)2
,則|z|=
 

查看答案和解析>>

同步練習(xí)冊答案