6.已知圓和直線的方程如圖所示,請用不等式表示圖中陰影部分所示的平面區(qū)域.

分析 根據(jù)圖象以及圓和直線的方程直接讀出即可.

解答 解:由圖象得:不等式x2+y2≤1表示第一個(gè)圖中陰影部分所示的平面區(qū)域,
不等式y(tǒng)≤x表示第二圖中陰影部分所示的平面區(qū)域.

點(diǎn)評 本題為二元一次不等式表示平面區(qū)域問題,只要由圖寫出對應(yīng)直線的方程,加以直線的虛實(shí),代點(diǎn)驗(yàn)證可判別區(qū)域,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.過雙曲線$\frac{y^2}{a^2}$-$\frac{x^2}{b^2}$=1(a>0,b>0)的一個(gè)焦點(diǎn)F作兩漸近線的垂線,垂足分別為P、Q,若∠PFQ=$\frac{2}{3}$π,則雙曲線的漸近線方程為( 。
A.y=±$\frac{{\sqrt{3}}}{3}$xB.y=±$\sqrt{3}$xC.y=±xD.y=±$\frac{{\sqrt{3}}}{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)α∈($\frac{π}{2}$,π),函數(shù)f(x)=(sinα)${\;}^{{x}^{2}-2x+3}$的最大值為$\frac{1}{4}$,則α=$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)為(0,+∞)上的增函數(shù),若f(a2-a)>f(a+3),則實(shí)數(shù)a的取值范圍為-3<a<-1或a>3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在平面直角坐標(biāo)系xOy中,已知A、B分別是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的上、下頂點(diǎn),點(diǎn)M(0,$\frac{1}{2}$)為線段AO的中點(diǎn),AB=$\sqrt{2}$a.
(1)求橢圓的方程;
(2)設(shè)N(t,2)(t≠0),直線NA,NB分別交橢圓于點(diǎn)P,Q,直線NA,NB,PQ的斜率分別為k1,k2,k3
①求證:P,M,Q三點(diǎn)共線;
②求證:k1k3+k2k3-k1k2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知A(x1,y1),B(x2,y2)是拋物線x2=4y上不相同的兩個(gè)點(diǎn),l是弦AB的垂直平分線.
(1)當(dāng)x1+x2取何值時(shí),可使拋物線的焦點(diǎn)F與原點(diǎn)O到直線l的距離相等?證明你的結(jié)論.
(2)當(dāng)直線l的斜率為1時(shí),求l在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)y=f(x)是定義在R上的增函數(shù),點(diǎn)P(3,1)在y=f(x)的圖象上,且函數(shù)y=f(x-2012)的圖象關(guān)于點(diǎn)(2012,0)對稱,則不等式|f(x+1)|<1的解集是(-4,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知二次函數(shù)f(x)=ax2+bx+c,(a≠0),且不等式f(x)-2x<0的解集為(-1,2).
(1)若函數(shù)y=f(x)+3a有零點(diǎn),求a的取值范圍;
(2)a如何取值時(shí),函數(shù)y=f(x)-(x2-ax+m)其中m>1存在零點(diǎn),并求出零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)$f(x)=\sqrt{|{x+2}|+|{x-4}|-m}$的定義域?yàn)镽.
(Ⅰ)求實(shí)數(shù)m的范圍;
(Ⅱ)若m的最大值為n,當(dāng)正數(shù)a,b滿足$\frac{4}{a+5b}+\frac{1}{3a+2b}=n$時(shí),求4a+7b的最小值.

查看答案和解析>>

同步練習(xí)冊答案