16.過雙曲線$\frac{y^2}{a^2}$-$\frac{x^2}{b^2}$=1(a>0,b>0)的一個(gè)焦點(diǎn)F作兩漸近線的垂線,垂足分別為P、Q,若∠PFQ=$\frac{2}{3}$π,則雙曲線的漸近線方程為( 。
A.y=±$\frac{{\sqrt{3}}}{3}$xB.y=±$\sqrt{3}$xC.y=±xD.y=±$\frac{{\sqrt{3}}}{2}$x

分析 作出雙曲線的圖象,求出漸近線的斜率即可得到結(jié)論.

解答 解:如圖若∠PFQ=$\frac{2}{3}$π,
則由對稱性得∠QFO=$\frac{π}{3}$,
則∠QOx=$\frac{π}{3}$,
即OQ的斜率k=$\frac{a}$=tan$\frac{π}{3}$=$\sqrt{3}$,
則雙曲線漸近線的方程為y=±$\sqrt{3}$x,
故選:B

點(diǎn)評 本題主要考查雙曲線漸近線的求解,根據(jù)直線垂直求出漸近線的傾斜角和斜率是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知f(x)=cosx(λsinx-cosx)+cos2(${\frac{π}{2}$-x)+1(λ>0)的最大值為3.
(I)求函數(shù)f(x)的對稱軸;
(Ⅱ)在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且$\frac{cosA}{cosB}$=$\frac{a}{2c-b}$,若不等式f(B)<m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)y=x2+2(a-1)x+6在(-∞,4)上是減函數(shù),在(4,+∞)上是增函數(shù).則a=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知a,b,c為實(shí)數(shù),關(guān)于x的二次方程ax2+bx+c=0有兩個(gè)非零實(shí)根x1、x2,則下列關(guān)于x的一元二次方程中以$\frac{1}{{x}_{1}^{2}}$,$\frac{1}{{x}_{2}^{2}}$為根的是( 。
A.c2x2+(b2-2ac)x+a2=0B.c2x2-(b2-2ac)x+a2=0
C.c2x2+(b2-2ac)x-a2=0D.c2x2-(b2-2ac)x-a2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.拋物線x2=8y的焦點(diǎn)F的坐標(biāo)是(  )
A.(0,2)B.(2,0)C.(0,-2)D.(-2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若函數(shù)f(x)=2sin(2x-$\frac{π}{6}$),則該函數(shù)圖象的一條對稱軸方程是( 。
A.x=$\frac{π}{12}$B.x=$\frac{5π}{12}$C.x=$\frac{π}{6}$D.x=$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若集合A={x|x2-x-2<0},B={-2,0,1},則A∩B等于( 。
A.{2}B.{0,1}C.{-1,0}D.{-1,0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=ex-cx-c(c為常數(shù),e是自然對數(shù)的底數(shù)),f′(x)是函數(shù)y=f(x)的導(dǎo)函數(shù).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)c>1時(shí),試求證:
①對任意的x>0,不等式f(lnc+x)>f(lnc-x)恒成立;
②函數(shù)y=f(x)有兩個(gè)相異的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知圓和直線的方程如圖所示,請用不等式表示圖中陰影部分所示的平面區(qū)域.

查看答案和解析>>

同步練習(xí)冊答案