【題目】已知圓, 在拋物線上,圓過原點且與的準線相切.

(Ⅰ) 求的方程;

(Ⅱ) 點,點(與不重合)在直線上運動,過點的兩條切線,切點分別為, .求證: (其中為坐標原點).

【答案】(I);(Ⅱ) 見解析.

【解析】試題分析:(I)原點在圓上,拋物線準線與圓相切,可得三者之間的關系,進而求出的方程;(Ⅱ) 設 , ,利用導數(shù)求得兩切線方程,利用根與系數(shù)關系可證,即證兩角相等.

試題解析:(I)解法一:因為圓的圓心在拋物線上且與拋物線的準線相切,且圓半徑為

,

因為圓過原點,所以,所以

,所以

因為,所以,所以拋物線方程

解法二:因為圓的圓心在拋物線上且與拋物線的準線相切,由拋物線的定義,

必過拋物線的焦點,

又圓過原點,所以,

又圓的半徑為3,所以,又

,得,所以.所以拋物線方程

解法三:因為圓與拋物線準線相切,所以,

且圓過又圓過原點,故,可得

解得,所以拋物線方程

(Ⅱ) 解法一:設 , , 方程為,所以, 5分

求得拋物線在點處的切線的斜率,所以切線方程為: ,

,化簡得,

又因過點,故可得,

,同理可得

所以為方程的兩根,所以 ,

因為,所以,

化簡

所以

解法二:依題意設點,設過點的切線為,所以,

所以,所以,即,

不妨設切線的斜率為,點,

所以, ,又,所以,所以,

所以 ,即點,同理點,

因為,所以,同理

所以 ,

所以

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】第96屆(春季)全國糖酒商品交易會于2017年3月23日至25日在四川舉辦.展館附近一家川菜特色餐廳為了研究參會人數(shù)與本店所需原材料數(shù)量的關系,在交易會前查閱了最近5次交易會的參會人數(shù)(萬人)與餐廳所用原材料數(shù)量(袋),得到如下數(shù)據(jù):

(Ⅰ)請根據(jù)所給五組數(shù)據(jù),求出關于的線性回歸方程;

(Ⅱ)若該店現(xiàn)有原材料12袋,據(jù)悉本次交易會大約有13萬人參加,為了保證原材料能夠滿足需要,則該店應至少再補充原材料多少袋?

(參考公式: ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有甲,乙,丙,丁四位同學課余參加巴蜀愛心社和巴蜀文學風的活動,每人參加且只能參加一個社團的活動,并且參加每個社團都是等可能的.

(1)求巴蜀愛心社和巴蜀文學風都至少有1人參加的概率;

(2)求甲,乙在同一個社團,丙,丁不在同一個社團的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓)離心率為,過點的橢圓的兩條切線相互垂直.

(1)求此橢圓的方程;

(2)若存在過點的直線交橢圓于兩點,使得為右焦點),求的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有下列五個命題: ①平面內,到一定點的距離等于到一定直線距離的點的集合是拋物線;
②平面內,定點F1、F2 , |F1F2|=6,動點M滿足|MF1|+|MF2|=6,則點M的軌跡是橢圓;
③在△ABC中,“∠B=60°”是“∠A,∠B,∠C三個角成等差數(shù)列”的充要條件;
④“若﹣3<m<5,則方程 =1是橢圓”.
⑤已知向量 , 是空間的一個基底,則向量 + , , 也是空間的一個基底.
其中真命題的序號是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐P﹣ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面 ABCD,且PA=AD=DB= ,AB=1,M是PB的中點.
(1)證明:面PAD⊥面PCD;
(2)求AC與PB所成的角;
(3)求平面AMC與平面BMC所成二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)求f(x)的定義域;
(2)求使f(x)>0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是一塊地皮,其中, 是直線段,曲線段是拋物線的一部分,且點是該拋物線的頂點, 所在的直線是該拋物線的對稱軸.經(jīng)測量, km, km, .現(xiàn)要從這塊地皮中劃一個矩形來建造草坪,其中點在曲線段上,點, 在直線段上,點在直線段上,設km,矩形草坪的面積為km2

(1)求,并寫出定義域;

(2)當為多少時,矩形草坪的面積最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|0<ax+1≤5},B={x|﹣ <x≤2}.
(1)當a=1時,判斷集合BA是否成立?
(2)若AB,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案