【題目】已知集合A={x|0<ax+1≤5},B={x|﹣ <x≤2}.
(1)當(dāng)a=1時,判斷集合BA是否成立?
(2)若AB,求實數(shù)a的取值范圍.

【答案】
(1)解:當(dāng)a=1時,集合A={x|0<x+1≤5}={x|﹣1<x+1≤4},B={x|﹣ <x≤2}.

∴BA成立


(2)解:當(dāng)a=0時,A=R,AB不成立;

當(dāng)a<0時,A={x|0<ax+1≤5}={x| ≤x< },

若AB,則 ,解得:a<﹣8;

當(dāng)a>0時,A={x|0<ax+1≤5}={x| <x≤ },

若AB,則 ,解得:a≥2;

綜上可得:a<﹣8,或a≥2


【解析】(1)當(dāng)a=1時,集合A={x|0<x+1≤5}={x|﹣1<x+1≤4},根據(jù)集合包含關(guān)系的定義,可得結(jié)論;(2)根據(jù)集合包含關(guān)系的定義,對a進行分類討論,最后綜合,可得滿足條件的實數(shù)a的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓, 在拋物線上,圓過原點且與的準線相切.

(Ⅰ) 求的方程;

(Ⅱ) 點,點(與不重合)在直線上運動,過點的兩條切線,切點分別為, .求證: (其中為坐標原點).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x2﹣4x+3,若f(x)≥mx對任意的實數(shù)x≥2都成立,則實數(shù)m的取值范圍是(
A.[﹣2 ﹣4,﹣2 ?+4]
B.(﹣∞,﹣2 ﹣4]∪[﹣2 ?+4,+∞)
C.[﹣2 ?+4,+∞)
D.(﹣∞,﹣ ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若存在最小值,求的取值范圍;

(Ⅱ)當(dāng)時,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=loga(x2﹣2ax)(a>0且a≠1)滿足對任意的x1 , x2∈[3,4],且x1≠x2時,都有 >0成立,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校屆高三文(1)班在一次數(shù)學(xué)測驗中,全班名學(xué)生的數(shù)學(xué)成績的頻率分布直方圖如下,已知分數(shù)在的學(xué)生數(shù)有人.

(1)求總?cè)藬?shù)和分數(shù)在的人數(shù);

(2)利用頻率分布直方圖,估算該班學(xué)生數(shù)學(xué)成績的眾數(shù)和中位數(shù)各是多少?

(3)現(xiàn)在從比分數(shù)在名學(xué)生(男女生比例為)中任選人,求其中至多含有名男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如下圖,在長方體ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,點E在棱AB上移動,則直線D1E與A1D所成角的大小是 , 若D1E⊥EC,則直線A1D與平面D1DE所成的角為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=(ax﹣1)(x﹣1).
(1)若不等式f(x)<0的解集為{x|1<x<2},求實數(shù)a的值;
(2)當(dāng)a>0時,解關(guān)于x的不等式f(x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義在區(qū)間D上的函數(shù)y=f(x)滿足:對x∈D,M∈R,使得|f(x)|≤M恒成立,則稱函數(shù)y=f(x)在區(qū)間D上有界.則下列函數(shù)中有界的是:
①y=sinx;② ;③y=tanx;④ ;
⑤y=x3+ax2+bx+1(﹣4≤x≤4),其中a,b∈R.

查看答案和解析>>

同步練習(xí)冊答案