【題目】在平面直角坐標(biāo)系中,圓:,直線:.為圓內(nèi)一點(diǎn),弦過點(diǎn),過點(diǎn)作的垂線交于點(diǎn).
(1)若,求的面積;
(2)判斷直線與圓的位置關(guān)系,并證明.
【答案】(1);(2)直線與圓相切,證明見解析.
【解析】
(1)根據(jù)直線平行可得直線MN的方程,然后求出弦長和高,可得三角形的面積;
(2)聯(lián)立方程求出點(diǎn)的坐標(biāo),利用向量數(shù)量積證明,進(jìn)而可得直線與圓的位置關(guān)系.
(1)因為,設(shè)直線的方程為,
由條件得,,解得,即直線MN的方程為.
因為,,所以,即,
所以.
又因為直線與直線間的距離,即點(diǎn)到直線的距離為3,
所以的面積為.
(2)直線與圓相切,證明如下:
設(shè),則直線的斜率,
因為,所以直線的斜率為,
所以直線的方程為.
聯(lián)立方程組解得點(diǎn)的坐標(biāo)為,
所以,
由于,,
所以
,
所以,即,所以直線與圓相切,得證.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(多選題)下列說法正確的是( )
A.在回歸直線方程中,當(dāng)解釋變量每增加1個單位時,預(yù)報變量平均減少2.3個單位
B.兩個具有線性相關(guān)關(guān)系的變量,當(dāng)相關(guān)指數(shù)的值越接近于0,則這兩個變量的相關(guān)性就越強(qiáng)
C.若兩個變量的相關(guān)指數(shù),則說明預(yù)報變量的差異有88%是由解釋變量引起的
D.在回歸直線方程中,相對于樣本點(diǎn)的殘差為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若在上存在單調(diào)遞增區(qū)間,求實數(shù)的取值范圍;
(2)設(shè),若,恒有成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】東京夏季奧運(yùn)會推遲至2021年7月23日至8月8日舉行,此次奧運(yùn)會將設(shè)置4 100米男女混泳接力賽這一新的比賽項目,比賽的規(guī)則是:每個參賽國家派出2男2女共計4名運(yùn)動員參加比賽,按照仰泳蛙泳蝶泳自由泳的接力順序,每種泳姿100米且由1名運(yùn)動員完成,且每名運(yùn)動員都要出場.若中國隊確定了備戰(zhàn)該項目的4名運(yùn)動員名單,其中女運(yùn)動員甲只能承擔(dān)仰泳或者自由泳,男運(yùn)動員乙只能承擔(dān)蝶泳或者蛙泳,剩下2名運(yùn)動員四種泳姿都可以承擔(dān),則中國隊參賽的安排共有( )
A.144種B.8種C.24種D.12種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在統(tǒng)計學(xué)中,同比增長率一般是指和去年同期相比較的增長率,環(huán)比增長率一般是指和前一時期相比較的增長率.2020年2月29日人民網(wǎng)發(fā)布了我國2019年國民經(jīng)濟(jì)和社會發(fā)展統(tǒng)計公報圖表,根據(jù)2019年居民消費(fèi)價格月度漲跌幅度統(tǒng)計折線圖,下列說法正確的是( )
A.2019年我國居民每月消費(fèi)價格與2018年同期相比有漲有跌
B.2019年我國居民每月消費(fèi)價格中2月消費(fèi)價格最高
C.2019年我國居民每月消費(fèi)價格逐月遞增
D.2019年我國居民每月消費(fèi)價格3月份較2月份有所下降
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)X是有限集,t為正整數(shù),F是包含t個子集的子集族:F=.如果F中的部分子集構(gòu)成的集族S滿足:對S中任意兩個不相等的集合A、B,均不成立,則稱S為反鏈.設(shè)S1為包含集合最多的反鏈,S2是任意反鏈.證明:存在S2到S1的單射f,滿足或成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的焦點(diǎn)為,準(zhǔn)線為,為過焦點(diǎn)且垂直于軸的拋物線的弦,已知以為直徑的圓經(jīng)過點(diǎn).
(1)求的值及該圓的方程;
(2)設(shè)為上任意一點(diǎn),過點(diǎn)作的切線,切點(diǎn)為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=axlnx﹣x2﹣ax+1(a∈R)在定義域內(nèi)有兩個不同的極值點(diǎn).
(1)求實數(shù)a的取值范圍;
(2)設(shè)兩個極值點(diǎn)分別為x1,x2,x1<x2,證明:f(x1)+f(x2)<2﹣x12+x22.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)函數(shù),若函數(shù)在區(qū)間上存在正的極值,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com