a
=(1,2),
b
=(x,1),
m
=
a
+2
b
,
n
=2
a
-
b
,且
m
n
,則x=( 。
A、2
B、
7
2
C、-2或
7
2
D、
1
2
或-
7
2
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專(zhuān)題:計(jì)算題,平面向量及應(yīng)用
分析:運(yùn)用向量的加減坐標(biāo)運(yùn)算和向量垂直的條件:數(shù)量積為0,解方程即可得到.
解答: 解:若
a
=(1,2),
b
=(x,1),
m
=
a
+2
b
=(1+2x,4),
n
=2
a
-
b
=(2-x,3),
m
n
,則
m
n
=0,
即有(1+2x)(2-x)+12=0,
解得,x=-2或
7
2

故選C.
點(diǎn)評(píng):本題考查向量的加減運(yùn)算和向量的數(shù)量積的坐標(biāo)表示,考查向量垂直的條件:數(shù)量積為0,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:若各項(xiàng)為正實(shí)數(shù)的數(shù)列{an}滿(mǎn)足an+1=
an
(n∈N*)
,則稱(chēng)數(shù)列{an}為“算術(shù)平方根遞推數(shù)列”.已知數(shù)列{xn}滿(mǎn)足xn>0,n∈N*,且x1=
9
2
,點(diǎn)(xn+1,xn)在二次函數(shù)f(x)=2x2+2x的圖象上.
(1)試判斷數(shù)列{2xn+1}(n∈N*)是否為算術(shù)平方根遞推數(shù)列?若是,請(qǐng)說(shuō)明你的理由;
(2)記yn=lg(2xn+1)(n∈N*),求證:數(shù)列{yn}是等比數(shù)列,并求出通項(xiàng)公式y(tǒng)n
(3)從數(shù)列{yn}中依據(jù)某種順序自左至右取出其中的項(xiàng)yn1,yn2,yn3,…,把這些項(xiàng)重新組成一個(gè)新數(shù)列{zn}:z1=yn1,z2=yn2,z3=yn3,….
(理科)若數(shù)列{zn}是首項(xiàng)為z1=(
1
2
)m-1
、公比為q=
1
2k
(m,k∈N*)
的無(wú)窮等比數(shù)列,且數(shù)列{zn}各項(xiàng)的和為
16
63
,求正整數(shù)k、m的值.
(文科) 若數(shù)列{zn}是首項(xiàng)為z1=(
1
2
)m-1
,公比為q=
1
2k
(m,k∈N*)
的無(wú)窮等比數(shù)列,且數(shù)列{zn}各項(xiàng)的和為
1
3
,求正整數(shù)k、m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,|φ|<
π
2
)的最小正周期為π,且f(-x)=f(x),則(  )
A、f(x)在(0,
π
2
)單調(diào)遞增
B、f(x)在(
π
4
,
4
)單調(diào)遞減
C、f(x)在(
π
4
,
4
)單調(diào)遞增
D、f(x)在(
π
2
,π)單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,與函數(shù)f(x)=ln(x+1)有相同定義域的是( 。
A、y=
x+1
B、y=
1
x+1
C、y=|x+1|
D、y=
1
x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系中,點(diǎn)(2,
π
3
)到直線ρcosθ=3的距離等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,A,B分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左右頂點(diǎn),F(xiàn)為其右焦點(diǎn),2是|AF|與|FB|的等差中項(xiàng),
3
是|AF|與|FB|的等比中項(xiàng).
(1)求橢圓C的方程;
(2)已知點(diǎn)P是橢圓C上異于A,B的動(dòng)點(diǎn),直線l過(guò)點(diǎn)A且垂直于x軸,若過(guò)F作直線FQ垂直于AP,并交直線l于點(diǎn)Q.證明:Q,P,B三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2
x
+xlnx,則曲線y=f(x)在x=1處的切線方程為( 。
A、x-y-3=0
B、x-y+3=0
C、x+y-3=0
D、x+y+3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,近日我漁船編隊(duì)在島A周?chē)S蜃鳂I(yè),在島A的南偏西20°方向有一個(gè)海面觀測(cè)站B,某時(shí)刻觀測(cè)站發(fā)現(xiàn)有不明船只向我漁船編隊(duì)靠近,現(xiàn)測(cè)得與B相距31海里的C處有一艘海警船巡航,上級(jí)指示海警船沿北偏西40°方向,以40海里/小時(shí)的速度向島A直線航行以保護(hù)我漁船編隊(duì),30分鐘后到達(dá)D處,此時(shí)觀測(cè)站測(cè)得B,D間的距離為21海里.
(Ⅰ)求sin∠BDC的值;
(Ⅱ)試問(wèn)海警船再向前航行多少分鐘方可到島A?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在空間直角坐標(biāo)系O-xyz中,已知O(0,0,0),A(1,2,3),B(2,1,2),P(1,1,2),點(diǎn)Q在直線OP上運(yùn)動(dòng),當(dāng)
QA
QB
取最小值時(shí),點(diǎn)Q的坐標(biāo)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案