定義:若各項(xiàng)為正實(shí)數(shù)的數(shù)列{a
n}滿(mǎn)足a
n+1=
(n∈N*),則稱(chēng)數(shù)列{a
n}為“算術(shù)平方根遞推數(shù)列”.已知數(shù)列{x
n}滿(mǎn)足x
n>0,n∈N
*,且x
1=
,點(diǎn)(x
n+1,x
n)在二次函數(shù)f(x)=2x
2+2x的圖象上.
(1)試判斷數(shù)列{2x
n+1}(n∈N
*)是否為算術(shù)平方根遞推數(shù)列?若是,請(qǐng)說(shuō)明你的理由;
(2)記y
n=lg(2x
n+1)(n∈N
*),求證:數(shù)列{y
n}是等比數(shù)列,并求出通項(xiàng)公式y(tǒng)
n;
(3)從數(shù)列{y
n}中依據(jù)某種順序自左至右取出其中的項(xiàng)y
n1,y
n2,y
n3,…,把這些項(xiàng)重新組成一個(gè)新數(shù)列{z
n}:z
1=y
n1,z
2=y
n2,z
3=y
n3,….
(理科)若數(shù)列{z
n}是首項(xiàng)為
z1=()m-1、公比為q=
(m,k∈N*)的無(wú)窮等比數(shù)列,且數(shù)列{z
n}各項(xiàng)的和為
,求正整數(shù)k、m的值.
(文科) 若數(shù)列{z
n}是首項(xiàng)為
z1=()m-1,公比為q=
(m,k∈N*)的無(wú)窮等比數(shù)列,且數(shù)列{z
n}各項(xiàng)的和為
,求正整數(shù)k、m的值.