分析 (Ⅰ)設(shè)數(shù)列{an}的公比為q(q>0),數(shù)列{bn}的公差為d,由$\left\{\begin{array}{l}{2{q}^{2}-3d=2}\\{{q}^{4}-3d=10}\end{array}\right.$,整理得q4-2q2-8=0,得$\left\{\begin{array}{l}{q=2}\\{d=2}\end{array}\right.$,于是可得{an}和{bn}的通項(xiàng)公式;
(Ⅱ)由(Ⅰ)得Cn=anbn=(2n-1)2n-1,利用錯(cuò)位相減法求和即可.
解答 解:(Ⅰ)設(shè)數(shù)列{an}的公比為q(q>0),數(shù)列{bn}的公差為d,
由$\left\{\begin{array}{l}{2{q}^{2}-3d=2}\\{{q}^{4}-3d=10}\end{array}\right.$,整理得q4-2q2-8=0,得$\left\{\begin{array}{l}{q=2}\\{d=2}\end{array}\right.$.
∴${a}_{n}={2}^{n-1}$,bn=2n-1
(Ⅱ)由(Ⅰ)得Cn=anbn=(2n-1)2n-1,
設(shè)數(shù)列{Cn}的前n項(xiàng)和為sn
sn=1×20+3×21+5×22+…+(2n-3)×2n-2+(2n-1)×2n-1.
2sn=1×21+3×22+5×23+…+(2n-3)×2n-1+(2n-1)×2n
兩式相減得-sn=1+22+23+34+…+2n-(2n-1)×2n=-(2n-3)×2n-3
sn=(2n-3)×2n+3,(n∈N+)
點(diǎn)評(píng) 本題考查了等差數(shù)列、等比數(shù)列的通項(xiàng),錯(cuò)位相減法求和,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x-y-1=0 | B. | x-y+1=0 | C. | x-y-5=0 | D. | x+y-5=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{10}}{10}$ | B. | $\frac{3\sqrt{10}}{10}$ | C. | $\frac{\sqrt{10}}{5}$ | D. | $\frac{\sqrt{15}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com