1.若向量$\overrightarrow{a}$(-3,4),|$\overrightarrow$|=10,求非零向量$\overrightarrow$,使(1)$\overrightarrow{a}$∥$\overrightarrow$;(2)$\overrightarrow{a}$⊥$\overrightarrow$.

分析 根據(jù)向量的模和向量的平行和垂直的條件即可求出.

解答 解:設(shè)$\overrightarrow$=(x,y),
∵|$\overrightarrow$|=10,
∴x2+y2=100①,
(1)∵$\overrightarrow{a}$∥$\overrightarrow$,$\overrightarrow{a}$(-3,4),|
∴-3y-4x=0,②,
由①②解得$\left\{\begin{array}{l}{x=6}\\{y=-8}\end{array}\right.$或$\left\{\begin{array}{l}{x=-6}\\{y=8}\end{array}\right.$,
即$\overrightarrow$=(6,-8)或(-6,8),
(2)∵$\overrightarrow{a}$⊥$\overrightarrow$,
∴-3x+4y=0,
解得$\left\{\begin{array}{l}{x=8}\\{y=6}\end{array}\right.$或$\left\{\begin{array}{l}{x=-8}\\{y=-6}\end{array}\right.$,
即$\overrightarrow$=(8,6)或(-8,-6)

點(diǎn)評(píng) 本題考查了向量的平行和垂直、模的計(jì)算公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.函數(shù)y=|x-2|+3的最小值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.下表是某校高三一次月考5個(gè)班級(jí)的數(shù)學(xué)、物理的平均成績(jī):
班級(jí)12345
數(shù)學(xué)(x分)111113119125127
物理(y分)92939699100
(Ⅰ)一般來(lái)說(shuō),學(xué)生的物理成績(jī)與數(shù)學(xué)成績(jī)具有線性相關(guān)關(guān)系,根據(jù)上表提供的數(shù)據(jù),求兩個(gè)變量x,y的線性回歸方程$\hat y=\hat bx+\hat a$;
(Ⅱ)從以上5個(gè)班級(jí)中任選兩個(gè)參加某項(xiàng)活動(dòng),設(shè)選出的兩個(gè)班級(jí)中數(shù)學(xué)平均分在115分以上的個(gè)數(shù)為X,求X的分布列和數(shù)學(xué)期望.
附:$\hat b=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知點(diǎn)M的坐標(biāo)(x,y)滿足不等式組$\left\{\begin{array}{l}{2x+y-4≥0}\\{x-y-2≥0}\\{y-3≤0}\end{array}\right.$,則x2+y2的最小值是( 。
A.$\frac{4\sqrt{5}}{5}$B.2C.$\frac{16}{5}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在直角坐標(biāo)系中,圓C的方程是x2+y2-4x=0,圓心為C,在以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,曲線C1:ρ=-4$\sqrt{3}$sinθ與圓C相交于A,B兩點(diǎn).
(1)求曲線C1和直線AB的直角坐標(biāo)方程;
(2)若過圓心C的直線C2:$\left\{\begin{array}{l}{x=2+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t為參數(shù))交直線AB于點(diǎn)D,交y軸于點(diǎn)E,求|CD|:|CE|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若變量x,y滿足約束條件$\left\{\begin{array}{l}{x+y≥3}\\{x-y≥-1}\\{2x-y≤3}\end{array}\right.$,且z=ax+3y的最小值為7,則a的值為( 。
A.1B.2C.-2D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.二次函數(shù)f(x)滿足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)設(shè)g(x)=2x+m,若對(duì)任意的x∈[-1,1],f(x)>g(x)恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知直線l1;2x+y-2=0,l2:ax+4y+1=0,若l1⊥l2,則a的值為(  )
A.8B.2C.-$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知拋物線y2=2px(p>0)上的點(diǎn)到焦點(diǎn)的距離的最小值為2,過點(diǎn)(0,1)的直線l與拋物線只有一個(gè)公共點(diǎn),則焦點(diǎn)到直線l的距離為(  )
A.1或$\sqrt{2}$或2B.1或2或$\sqrt{5}$C.2或$\sqrt{2}$D.2或$\sqrt{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案