7.函數(shù)y=|x-2|+3的最小值是3.

分析 根據(jù)絕對值的性質(zhì)即可求出函數(shù)的最小值.

解答 解:y=|x-2|+3≥3,當(dāng)x=2時(shí),取得等號.
故函數(shù)y=|x-2|+3的最小值是3,
故答案為:3

點(diǎn)評 本題考查函數(shù)的最小值,以及絕對值函數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)$f(x)=1+2sin(2x-\frac{π}{3})$.

(Ⅰ)用五點(diǎn)法作圖作出f(x)在x∈[0,π]的圖象;
(2)求f(x)在x∈[$\frac{π}{4}$,$\frac{π}{2}$]的最大值和最小值;
(3)若不等式f(x)-m<2在x∈[$\frac{π}{4}$,$\frac{π}{2}$]上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知f(x)為奇函數(shù),當(dāng)x<0時(shí),f(x)=ln(-x)+2x,則曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程是x-y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)函數(shù)f(x)=2x,函數(shù)g(x)的圖象與函數(shù)f(x)的圖象關(guān)于y軸對稱.
(1)若f(x)=4g(x)+3,求x的值;
(2)若存在x∈[0,4],使不等式f(a+x)-g(-2x)≥3成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-1+tcosα\\ y=\frac{1}{2}+tsinα\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為${ρ^2}=\frac{4}{{4{{sin}^2}θ+{{cos}^2}θ}}$.
(1)寫出曲線C的直角坐標(biāo)方程;
(2)已知點(diǎn)P的直角坐標(biāo)為$(-1,\frac{1}{2})$,直線l與曲線C相交于不同的兩點(diǎn)A,B,求|PA|•|PB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)$f(x)=\left\{\begin{array}{l}2x+a,x<0\\ x+1,x≥0\end{array}\right.$,若f(x)是單調(diào)函數(shù),則a的取值范圍為(-∞,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)f(x)是定義在實(shí)數(shù)集R上的奇函數(shù),當(dāng)x>0時(shí),$f(x)=\frac{k}{x+1},k∈R,k≠0$..
(1)當(dāng)k=1時(shí),求f(x)的解析式;
(2)已知0<x<1時(shí),f(x)>1恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△ABC中,內(nèi)角A、B、C的對邊分別為a、b、c,且bsinA=$\sqrt{3}$acosB
(1)求角B的大小
(2)若b=3,sinC=2sinA,求a、c的值及△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.若向量$\overrightarrow{a}$(-3,4),|$\overrightarrow$|=10,求非零向量$\overrightarrow$,使(1)$\overrightarrow{a}$∥$\overrightarrow$;(2)$\overrightarrow{a}$⊥$\overrightarrow$.

查看答案和解析>>

同步練習(xí)冊答案