【題目】已知,且.
(1)求的值;
(2)證明: 存在唯一的極小值點,且.
(參考數(shù)據(jù): )
【答案】(1);(2)詳見解析.
【解析】
(1)求出定義域,設(shè),等價于.
由,,得求出的導(dǎo)數(shù),求出的值,利用導(dǎo)數(shù)驗證是的極大值點,從而驗證,符合題意;
(2)由(1)知,求導(dǎo)得.
設(shè),利用二次求導(dǎo),可以知道在上有唯一零點;又,所以在上有唯一零點.可以判斷出是的唯一極小值點.由,得,
故, 由(1)知.
令,,則,可以求出,結(jié)論得證.
解:(1)的定義域為.
設(shè),則,等價于.
因為,,所以
而,,得.
若,則,
當(dāng)時,,單調(diào)遞增;
當(dāng)時,,單調(diào)遞減;
所以是的極大值點,故.
綜上,.
(2)由(1)知,.
設(shè),則,,令,得.當(dāng)時,,單增;當(dāng)時,,單減;
又因為,,,所以在上有唯一零點;又,所以在上有唯一零點.
于是當(dāng)時,,時,,時,.因為,所以是的唯一極小值點.
由,得,
故,
由(1)知.
令,,則,當(dāng)時,,所以在上單調(diào)遞減,.
所以,結(jié)論得證.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正實數(shù)列a1,a2,…滿足對于每個正整數(shù)k,均有,證明:
(Ⅰ)a1+a2≥2;
(Ⅱ)對于每個正整數(shù)n≥2,均有a1+a2+…+an≥n.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“工資條里顯紅利,個稅新政入民心”.隨著2019年新年鐘聲的敲響,我國自1980年以來,力度最大的一次個人所得稅(簡稱個稅)改革迎來了全面實施的階段.某從業(yè)者為了解自己在個稅新政下能享受多少稅收紅利,繪制了他在26歲-35歲(2009年-2018年)之間各年的月平均收入(單位:千元)的散點圖:(注:年齡代碼1-10分別對應(yīng)年齡26-35歲)
(1)由散點圖知,可用回歸模型擬合與的關(guān)系,試根據(jù)有關(guān)數(shù)據(jù)建立關(guān)于的回歸方程;
(2)如果該從業(yè)者在個稅新政下的專項附加扣除為3000元/月,試利用(1)的結(jié)果,將月平均收入視為月收入,根據(jù)新舊個稅政策,估計他36歲時每個月少繳納的個人所得稅.
附注:①參考數(shù)據(jù):,,,,
,,,其中:取,.
②參考公式:回歸方程中斜率和截距的最小二乘估計分別為,.
③新舊個稅政策下每月應(yīng)納稅所得額(含稅)計算方法及稅率表如下:
舊個稅稅率表(個稅起征點3500元) | 新個稅稅率表(個稅起征點5000元) | |||
繳稅 級數(shù) | 每月應(yīng)納稅所得額(含稅)收入個稅起征點 | 稅率 | 每月應(yīng)納稅所得額(含稅)收入個稅起征點專項附加扣除 | 稅率 |
1 | 不超過1500元的都分 | 3 | 不超過3000元的都分 | 3 |
2 | 超過1500元至4500元的部分 | 10 | 超過3000元至12000元的部分 | 10 |
3 | 超過4500元至9000元的部分 | 20 | 超過12000元至25000元的部分 | 20 |
4 | 超過9000元至35000元的部分 | 25 | 超過25000元至35000元的部分 | 25 |
5 | 超過35000元至55000元的部分 | 30 | 超過35000元至55000元的部分 | 30 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(1)當(dāng)時,求不等式的解集;
(2)若不等式的解集為空集,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,幾何體AMDCNB是由兩個完全相同的四棱錐構(gòu)成的幾何體,這兩個四棱錐的底面ABCD為正方形,,平面平面ABCD.
(1)證明:平面平面MDC.
(2)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐(如圖一)的平面展開圖(如圖二)中,四邊形為邊長等于的正方形,和均為正三角形,在三棱錐中:
(Ⅰ)證明:平面平面;
(Ⅱ)若點為棱上一點且,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某市高三數(shù)學(xué)復(fù)習(xí)備考情況,該市教研機構(gòu)組織了一次檢測考試,并隨機抽取了部分高三理科學(xué)生數(shù)學(xué)成績繪制如圖所示的頻率分布直方圖.
(1)根據(jù)頻率分布直方圖,估計該市此次檢測理科數(shù)學(xué)的平均成績;(精確到個位)
(2)研究發(fā)現(xiàn),本次檢測的理科數(shù)學(xué)成績近似服從正態(tài)分布(,約為),按以往的統(tǒng)計數(shù)據(jù),理科數(shù)學(xué)成績能達到自主招生分數(shù)要求的同學(xué)約占.
(ⅰ)估計本次檢測成績達到自主招生分數(shù)要求的理科數(shù)學(xué)成績大約是多少分?(精確到個位)
(ⅱ)從該市高三理科學(xué)生中隨機抽取人,記理科數(shù)學(xué)成績能達到自主招生分數(shù)要求的人數(shù)為,求的分布列及數(shù)學(xué)期望.(說明:表示的概率.參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,點P是平面ABCD外一點,M是PC的中點,在DM上取一點G,過G和AP的平面交平面BDM于GH,H在BD上.
(1)求證平面BDM.
(2)若G為DM中點,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本,當(dāng)年產(chǎn)量不足80千件時,(萬元);當(dāng)年產(chǎn)量不小于80千件時,(萬元),每件售價為0.05萬元,通過市場分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com