如圖,直角三角形的頂點(diǎn)坐標(biāo),直角頂點(diǎn),頂點(diǎn)軸上,點(diǎn)為線段的中點(diǎn)

(1)求邊所在直線方程;(2)圓是△ABC的外接圓,求圓的方程;
(3)若DE是圓的任一條直徑,試探究是否是定值?
若是,求出定值;若不是,請(qǐng)說(shuō)明理由.

;;是定值,為-

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在直角坐標(biāo)系中,以為圓心的圓與直線相切.
(Ⅰ)求圓的方程;
(Ⅱ)圓軸相交于兩點(diǎn),圓內(nèi)的動(dòng)點(diǎn)使成等比數(shù)列,求的取值范圍(結(jié)果用區(qū)間表示).:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分16分)
在直角坐標(biāo)系xOy中,直線l與x軸正半軸和y軸正半軸分別相交于A,B兩點(diǎn),△AOB的內(nèi)切圓為圓M.
(1)如果圓M的半徑為1,l與圓M切于點(diǎn)C (,1+),求直線l的方程;
(2)如果圓M的半徑為1,證明:當(dāng)△AOB的面積、周長(zhǎng)最小時(shí),此時(shí)△AOB為同一個(gè)三角形;
(3)如果l的方程為x+y-2-=0,P為圓M上任一點(diǎn),求的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓C與x軸相切,圓心在直線y=3x上,且被直線2x+y-10=0截得的弦長(zhǎng)為4,
求此圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

橢圓的焦距是( )

A.3B.6C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知雙曲線,以右頂點(diǎn)為圓心,實(shí)半軸長(zhǎng)為半徑的圓被雙曲線的一條漸近線分為弧長(zhǎng)為1:2的兩部分,則雙曲線的離心率為(    )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

直線與曲線的交點(diǎn)個(gè)數(shù)為(    )

A.0 B.1 C.2 D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分14分)
已知圓,直線被圓所截得的弦的中點(diǎn)為P(5,3).
(1)求直線的方程;
(2)若直線與圓相交于兩個(gè)不同的點(diǎn),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)
已知橢圓C1和拋物線C2的焦點(diǎn)均在x軸上,C1的中心和C2的頂點(diǎn)均為原點(diǎn),從它們每條曲線上至少取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:   

x
5

4


y
2
0
-4



(Ⅰ)求C1和C2的方程;
(Ⅱ)過(guò)點(diǎn)S(0,-)且斜率為k的動(dòng)直線l交橢圓C1于A、B兩點(diǎn),在y軸上是否存在定點(diǎn)D,使以線段AB為直徑的圓恒過(guò)這個(gè)點(diǎn)?若存在,求出D的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案