已知雙曲線,以右頂點為圓心,實半軸長為半徑的圓被雙曲線的一條漸近線分為弧長為1:2的兩部分,則雙曲線的離心率為(    )

A. B. C. D.

B

解析試題分析:由題意知圓的圓心半徑圓的方程,漸近線方程
漸近線分弧長為1:2,劣弧所對角為由余弦定理得弦長,圓心到直線的距離
化簡得
考點:雙曲線性質(zhì)的綜合應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(14分) 已知圓方程為:.
(1)直線過點,且與圓交于、兩點,若,求直線的方程;
(2)過圓上一動點作平行于軸的直線,設(shè)軸的交點為,若向量為原點),求動點的軌跡方程,并說明此軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,直角三角形的頂點坐標(biāo),直角頂點,頂點軸上,點為線段的中點

(1)求邊所在直線方程;(2)圓是△ABC的外接圓,求圓的方程;
(3)若DE是圓的任一條直徑,試探究是否是定值?
若是,求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知雙曲線的一個焦點與拋物線的焦點重合,且雙曲線的離心率等于,則該雙曲線的方程為(   )

A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知動點在橢圓上,若點坐標(biāo)為,,且,則的最小值是(   )

A. B. C. D. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

拋物線的焦點與雙曲線的右焦點的連線交于第一象限的點,若在點處的切線平行于的一條漸近線,則(  )

A. B. C. D. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

在橢圓上有兩個動點,為定點,,則的最小值為(   )

A.6 B. C.9 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

若雙曲線的離心率為2,則等于(  )

A. B. C. D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

若橢圓=1與雙曲線=1(m,n,p,q均為正數(shù))有共同的焦點F1,F(xiàn)2,P是兩曲線的一個公共點,則·=(  )

A.p2-m2B.p-mC.m-pD.m2-p2

查看答案和解析>>

同步練習(xí)冊答案