【題目】已知函數(shù)(為常數(shù),是自然對數(shù)的底數(shù)),曲線在點(diǎn)處的切線與軸垂直.
(1)求的單調(diào)區(qū)間;
(2)設(shè),對任意,證明:.
【答案】(1)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是;(2)證明見解析.
【解析】
試題分析:(1)求出,根據(jù)曲線在點(diǎn)處的切線與軸垂直即切線斜率為,求出的值,解即得函數(shù)的單調(diào)遞增區(qū)間和遞減區(qū)間;(2)由于,所以整理得,分別證明時(shí),和,根據(jù)(1)可知:當(dāng)時(shí),由(1)知成立;當(dāng)時(shí),,,即證,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究其在單調(diào)性,求出其在上的最大值即可證得,再構(gòu)造函數(shù),利用導(dǎo)數(shù)求出其最小值,根據(jù)不等式的性質(zhì)即可得到要證明的結(jié)論.
試題解析:(1)因?yàn)?/span>,由已知得,∴.
所以,
設(shè),則,在上恒成立,即在上是減函數(shù),
由知,當(dāng)時(shí),從而,當(dāng)時(shí),從而.
綜上可知,的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.
(2)因?yàn)?/span>,要證原式成立即證成立,
現(xiàn)證明:對任意恒成立,
當(dāng)時(shí),由(1)知成立;
當(dāng)時(shí),,且由(1)知,∴.
設(shè),則,
當(dāng)時(shí),,當(dāng)時(shí),,所以當(dāng)時(shí),取得最大值. 所以,即時(shí),.
綜上所述,對任意.①
令,則恒成立,所以在上遞增,
恒成立,即,即.②
當(dāng)時(shí),有;當(dāng)時(shí),由①②式,,
綜上所述,時(shí),成立,故原不等式成立
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在浙江省和青海省各取面積大小一樣的A,B兩塊區(qū)域,分別調(diào)查人均可支配收入.獲得數(shù)據(jù)顯示,浙江省的A區(qū)域的人均可支配收入為35537元,青海省的B區(qū)域的人均可支配收入為24542元.
(1)能否得到這兩塊區(qū)域的人均可支配收入為(元)?
(2)若“A區(qū)域?yàn)?/span>70萬人,B區(qū)域?yàn)?/span>30萬人”,請問這兩塊區(qū)域的人均可支配收入為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線的切線經(jīng)過點(diǎn),求的方程;
(2)若方程有兩個不相等的實(shí)數(shù)根,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過研究學(xué)生的學(xué)習(xí)行為,專家發(fā)現(xiàn),學(xué)生的注意力著老師講課時(shí)間的變化而變化,講課開始時(shí),學(xué)生的興趣激增;中間有一段時(shí)間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生的注意力開始分散,設(shè)f(t)表示學(xué)生注意力隨時(shí)間t(分鐘)的變化規(guī)律\left(f(t)越大,表明學(xué)生注意力越集中),經(jīng)過實(shí)驗(yàn)分析得知:
(1)講課開始后多少分鐘,學(xué)生的注意力最集中?能持續(xù)多少分鐘?
(2)講課開始后5分鐘與講課開始后25分鐘比較,何時(shí)學(xué)生的注意力更集中?
(3)一道數(shù)學(xué)難題,需要講解24分鐘,并且要求學(xué)生的注意力至少達(dá)到180,那么經(jīng)過適當(dāng)安排,教師能否在學(xué)生達(dá)到所需的狀態(tài)下講授完這道題目?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,霧霾日趨嚴(yán)重,霧霾的工作、生活受到了嚴(yán)重的影響,如何改善空氣質(zhì)量已成為當(dāng)今的熱點(diǎn)問題,某空氣凈化器制造廠,決定投入生產(chǎn)某型號的空氣凈化器,根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計(jì)規(guī)律,每生產(chǎn)該型號空氣凈化器(百臺),其總成本為(萬元),其中固定成本為12萬元,并且每生產(chǎn)1百臺的生產(chǎn)成本為10萬元(總成本=固定成本+生產(chǎn)成本),銷售收入(萬元)滿足,假定該產(chǎn)品銷售平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計(jì)規(guī)律,請完成下列問題:
(1)求利潤函數(shù)的解析式(利潤=銷售收入-總成本);
(2)工廠生產(chǎn)多少百臺產(chǎn)品時(shí),可使利潤最多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)).以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求的普通方程和的直角坐標(biāo)方程;
(2)若過點(diǎn)的直線與交于,兩點(diǎn),與交于,兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,是以為斜邊的直角三角形,,,,.
(1)若線段上有一個點(diǎn),使得平面,請確定點(diǎn)的位置,并說明理由;
(2)若平面平面,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若曲線在處的切線方程為,求實(shí)數(shù)的值;
(2)設(shè),若對任意兩個不等的正數(shù),,都有恒成立,求實(shí)數(shù)的取值范圍;
(3)若在上存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】北京、張家口2022年冬奧會申辦委員會在俄羅斯索契舉辦了發(fā)布會,某公司為了競標(biāo)配套活動的相關(guān)代言,決定對旗下的某商品進(jìn)行一次評估,該商品原來每件售價(jià)為25元,年銷售8萬件.
(1)據(jù)市場調(diào)查,若價(jià)格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收入不低于原收入,該商品每件定價(jià)最多為多少元?
(2)為了抓住申奧契機(jī),擴(kuò)大該商品的影響力,提高年銷售量.公司決定立即對該商品進(jìn)行全面技術(shù)革新和營銷策略改革,并提高定價(jià)到元.公司擬投入萬作為技改費(fèi)用,投入50萬元作為固定宣傳費(fèi)用,投入萬元作為浮動宣傳費(fèi)用.試問:當(dāng)該商品改革后的銷售量至少應(yīng)達(dá)到多少萬件時(shí),才可能使改革后的銷售收入不低于原收入與總投入之和?并求出此時(shí)商品的每件定價(jià).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com